Smart Farming in Europe

[1]  W. Parton,et al.  Agricultural intensification and ecosystem properties. , 1997, Science.

[2]  J. Lowenberg‐DeBoer,et al.  Precision Agriculture and Sustainability , 2004, Precision Agriculture.

[3]  Fernando P. Carvalho,et al.  Agriculture, pesticides, food security and food safety , 2006 .

[4]  Stanley Wood,et al.  Drivers of change in global agriculture , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[5]  Yongcan Cao,et al.  Band-reconfigurable Multi-UAV-based Cooperative Remote Sensing for Real-time Water Management and Distributed Irrigation Control , 2008 .

[6]  Mark Sullivan,et al.  Monitoring Global Croplands with Coarse Resolution Earth Observations: The Global Agriculture Monitoring (GLAM) Project , 2010, Remote. Sens..

[7]  Dennis Wichelns,et al.  Satisfying future water demands for agriculture , 2010 .

[8]  M. Emmerson,et al.  Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland , 2010 .

[9]  Elpiniki I. Papageorgiou,et al.  Fuzzy cognitive map based approach for predicting yield in cotton crop production as a basis for decision support system in precision agriculture application , 2011, Appl. Soft Comput..

[10]  S. Kumar,et al.  Infrastructure for data-driven agriculture: identifying management zones for cotton using statistical modeling and machine learning techniques , 2011, 2011 8th International Conference & Expo on Emerging Technologies for a Smarter World.

[11]  P. Zarco-Tejada,et al.  Mapping radiation interception in row-structured orchards using 3D simulation and high-resolution airborne imagery acquired from a UAV , 2012, Precision Agriculture.

[12]  J. Baluja,et al.  Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV) , 2012, Irrigation Science.

[13]  P. Zarco-Tejada,et al.  Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera , 2012 .

[14]  Tomasz Stuczynski,et al.  The suitability of an unmanned aerial vehicle (UAV) for the evaluation of experimental fields and crops. , 2012 .

[15]  Alessandro Matese,et al.  A flexible unmanned aerial vehicle for precision agriculture , 2012, Precision Agriculture.

[16]  Juliane Bendig,et al.  UAV-based Imaging for Multi-Temporal, very high Resolution Crop Surface Models to monitor Crop Growth Variability , 2013 .

[17]  F. López-Granados,et al.  Configuration and Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site Specific Weed Management , 2013, PloS one.

[18]  Heikki Saari,et al.  A case study of a precision fertilizer application task generation for wheat based on classified hyperspectral data from UAV combined with farm history data , 2013, Remote Sensing.

[19]  E. Fereres,et al.  Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard , 2013, Precision Agriculture.

[20]  F. López-Granados,et al.  Assessing the accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for precision agriculture purposes in wheat , 2013, Precision Agriculture.

[21]  Heikki Saari,et al.  Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture , 2013, Remote. Sens..

[22]  J. F. Ortega,et al.  Estimation of leaf area index in onion (Allium cepa L.) using an unmanned aerial vehicle , 2013 .

[23]  F. López-Granados,et al.  Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images , 2013, PloS one.

[24]  Erle C. Ellis,et al.  Used planet: A global history , 2013, Proceedings of the National Academy of Sciences.

[25]  Christos Goumopoulos,et al.  Automated zone-specific irrigation with wireless sensor/actuator network and adaptable decision support , 2014 .

[26]  I. Colomina,et al.  Unmanned aerial systems for photogrammetry and remote sensing: A review , 2014 .

[27]  Ingmar Nitze,et al.  Assessment of multi-temporal, multi-sensor radar and ancillary spatial data for grasslands monitoring in Ireland using machine learning approaches , 2014 .

[28]  Fernando Santos Osório,et al.  The use of unmanned aerial vehicles and wireless sensor networks for spraying pesticides , 2014, J. Syst. Archit..

[29]  P. J. Zarco-Tejada,et al.  Detection of downy mildew of opium poppy using high-resolution multi-spectral and thermal imagery acquired with an unmanned aerial vehicle , 2014, Precision Agriculture.

[30]  F. López-Granados,et al.  Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV , 2014 .

[31]  Pablo J. Zarco-Tejada,et al.  Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods , 2014 .

[32]  Yunhao Liu,et al.  Big Data: A Survey , 2014, Mob. Networks Appl..

[33]  Ismail Kavdir,et al.  Detecting corn tassels using computer vision and support vector machines , 2014, Expert Syst. Appl..

[34]  Simon Bennertz,et al.  Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging , 2014, Remote. Sens..

[35]  Johanna Link,et al.  Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System , 2014, Remote. Sens..

[36]  Alexandros Kaloxylos,et al.  A cloud-based Farm Management System: Architecture and implementation , 2014 .

[37]  Cees T. A. M. de Laat,et al.  Defining architecture components of the Big Data Ecosystem , 2014, 2014 International Conference on Collaboration Technologies and Systems (CTS).

[38]  José Manuel Peñá-Barragán,et al.  Assessing Optimal Flight Parameters for Generating Accurate Multispectral Orthomosaicks by UAV to Support Site-Specific Crop Management , 2015, Remote. Sens..

[39]  Artur M. Arsénio,et al.  Wireless sensor and actuator system for smart irrigation on the cloud , 2015, 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT).

[40]  Simon Bennertz,et al.  Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[41]  Haibo Lin,et al.  Study and Experiment on a Wheat Precision Seeding Robot , 2015, J. Robotics.

[42]  Sudhir Rao Rupanagudi,et al.  A novel cloud computing based smart farming system for early detection of borer insects in tomatoes , 2015, 2015 International Conference on Communication, Information & Computing Technology (ICCICT).

[43]  Piero Toscano,et al.  Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture , 2015, Remote. Sens..

[44]  Andreas Burkart,et al.  Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance , 2015 .

[45]  Pablo J. Zarco-Tejada,et al.  High-Resolution Airborne UAV Imagery to Assess Olive Tree Crown Parameters Using 3D Photo Reconstruction: Application in Breeding Trials , 2015, Remote. Sens..

[46]  F. López-Granados,et al.  Early season weed mapping in sunflower using UAV technology: variability of herbicide treatment maps against weed thresholds , 2016, Precision Agriculture.

[47]  V. R. Thool,et al.  Big data in precision agriculture: Weather forecasting for future farming , 2015, 2015 1st International Conference on Next Generation Computing Technologies (NGCT).

[48]  Marco Dubbini,et al.  Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images , 2015, Remote. Sens..

[49]  F. A. Vega,et al.  Multi-temporal imaging using an unmanned aerial vehicle for monitoring a sunflower crop , 2015 .

[50]  Robert J. Wood,et al.  Science, technology and the future of small autonomous drones , 2015, Nature.

[51]  T. Jarmer,et al.  Comparison of different regression models and validation techniques for the assessment of wheat leaf area index from hyperspectral data , 2015 .

[52]  N. B. Anuar,et al.  The rise of "big data" on cloud computing: Review and open research issues , 2015, Inf. Syst..

[53]  Lorenzo Comba,et al.  Vineyard detection from unmanned aerial systems images , 2015, Comput. Electron. Agric..

[54]  Jorge Torres-Sánchez,et al.  Quantifying Efficacy and Limits of Unmanned Aerial Vehicle (UAV) Technology for Weed Seedling Detection as Affected by Sensor Resolution , 2015, Sensors.

[55]  Daniela Stroppiana,et al.  Rice yield estimation using multispectral data from UAV: A preliminary experiment in northern Italy , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[56]  Gonzalo Pajares,et al.  Fleets of robots for environmentally-safe pest control in agriculture , 2017, Precision Agriculture.

[57]  R. Barth,et al.  Machine vision for a selective broccoli harvesting robot , 2016 .

[58]  George C. Zalidis,et al.  An autonomous multi-sensor UAV system for reduced-input precision agriculture applications , 2016, 2016 24th Mediterranean Conference on Control and Automation (MED).

[59]  Nicolas Virlet,et al.  Field phenotyping of water stress at tree scale by UAV-sensed imagery: new insights for thermal acquisition and calibration , 2016, Precision Agriculture.

[60]  Michael Pflanz,et al.  Monitoring Agronomic Parameters of Winter Wheat Crops with Low-Cost UAV Imagery , 2016, Remote. Sens..

[61]  H. Nieto,et al.  Crop water stress maps for an entire growing season from visible and thermal UAV imagery , 2016 .

[62]  Jaume Lloveras,et al.  Analysis of Vegetation Indices to Determine Nitrogen Application and Yield Prediction in Maize (Zea mays L.) from a Standard UAV Service , 2016, Remote. Sens..

[63]  María Pérez-Ortiz,et al.  Selecting patterns and features for between- and within- crop-row weed mapping using UAV-imagery , 2016, Expert Syst. Appl..

[64]  Edward Jones,et al.  A survey of image processing techniques for plant extraction and segmentation in the field , 2016, Comput. Electron. Agric..

[65]  Muhammad Intizar Ali,et al.  Agri-IoT: A semantic framework for Internet of Things-enabled smart farming applications , 2016, 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT).

[66]  R. S. Jadoun,et al.  Role of Cloud Computing Technology in Agriculture Fields , 2016 .

[67]  F. Castaldi,et al.  Assessing the potential of images from unmanned aerial vehicles (UAV) to support herbicide patch spraying in maize , 2017, Precision Agriculture.

[68]  Alejandro López,et al.  Combination of image processing and artificial neural networks as a novel approach for the identification of Bemisia tabaci and Frankliniella occidentalis on sticky traps in greenhouse agriculture , 2016, Comput. Electron. Agric..

[69]  Christian Schlegel,et al.  Managing a Mobile Agricultural Robot Swarm for a seeding task , 2016, IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society.

[70]  Xanthoula Eirini Pantazi,et al.  Wheat yield prediction using machine learning and advanced sensing techniques , 2016, Comput. Electron. Agric..

[71]  Antoine Messéan,et al.  Toward a Reduced Reliance on Conventional Pesticides in European Agriculture. , 2016, Plant disease.

[72]  M. Pérez-Ruiz,et al.  A cost-effective canopy temperature measurement system for precision agriculture: a case study on sugar beet , 2017, Precision Agriculture.

[73]  Francisco Javier Ferrández Pastor,et al.  Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture , 2016, Sensors.

[74]  Pablo J. Zarco-Tejada,et al.  Estimating evaporation with thermal UAV data and two-source energy balance models , 2016 .

[75]  Jorge Torres-Sánchez,et al.  Object-based early monitoring of a grass weed in a grass crop using high resolution UAV imagery , 2016, Agronomy for Sustainable Development.

[76]  Nengcheng Chen,et al.  A Cloud Computing-Enabled Spatio-Temporal Cyber-Physical Information Infrastructure for Efficient Soil Moisture Monitoring , 2016, ISPRS Int. J. Geo Inf..

[77]  Avital Bechar,et al.  Agricultural robots for field operations: Concepts and components , 2016 .

[78]  F. Baret,et al.  Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. , 2017 .

[79]  Andreas Kamilaris,et al.  A review on the practice of big data analysis in agriculture , 2017, Comput. Electron. Agric..

[80]  G. Menexes,et al.  Assessment of Vegetation Indices Derived by UAV Imagery for Durum Wheat Phenotyping under a Water Limited and Heat Stressed Mediterranean Environment , 2017, Front. Plant Sci..

[81]  Gérard Dedieu,et al.  Detection of Flavescence dorée Grapevine Disease Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery , 2017, Remote. Sens..

[82]  Omar Vergara-Díaz,et al.  Comparative UAV and Field Phenotyping to Assess Yield and Nitrogen Use Efficiency in Hybrid and Conventional Barley , 2017, Front. Plant Sci..

[83]  Peter Droogers,et al.  Effects of saline reclaimed waters and deficit irrigation on Citrus physiology assessed by UAV remote sensing , 2017 .

[84]  H. Navarro-Hellín,et al.  A software architecture based on FIWARE cloud for Precision Agriculture , 2017 .

[85]  Stavros Valsamidis,et al.  Proposed Fuzzy-NN Algorithm with LoRaCommunication Protocol for Clustered Irrigation Systems , 2017, Future Internet.

[86]  Morten Stigaard Laursen,et al.  Designing and Testing a UAV Mapping System for Agricultural Field Surveying , 2017, Sensors.

[87]  Giovanni Caruso,et al.  Estimating biophysical and geometrical parameters of grapevine canopies ('Sangiovese') by an unmanned aerial vehicle (UAV) and VIS-NIR cameras , 2017 .

[88]  J. A. López-Riquelme,et al.  New trends in precision agriculture: a novel cloud-based system for enabling data storage and agricultural task planning and automation , 2017, Precision Agriculture.

[89]  Wolfgang Lutz,et al.  The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100 , 2017, Global environmental change : human and policy dimensions.

[90]  Mostafa Hassanalian,et al.  Classifications, applications, and design challenges of drones: A review , 2017 .

[91]  Avital Bechar,et al.  Agricultural robots for field operations. Part 2: Operations and systems , 2017 .

[92]  Stefano Pignatti,et al.  Downstream Services for Rice Crop Monitoring in Europe: From Regional to Local Scale , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[93]  Rohan Bennett,et al.  Review of the Current State of UAV Regulations , 2017, Remote. Sens..

[94]  L. G. Santesteban,et al.  High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard , 2017 .

[95]  Spyros Fountas,et al.  Big Data for weed control and crop protection , 2017 .

[96]  S. Wolfert,et al.  Big Data in Smart Farming – A review , 2017 .

[97]  Andrea Luvisi,et al.  X-FIDO: An Effective Application for Detecting Olive Quick Decline Syndrome with Deep Learning and Data Fusion , 2017, Front. Plant Sci..

[98]  David Hernández-López,et al.  Uncooled Thermal Camera Calibration and Optimization of the Photogrammetry Process for UAV Applications in Agriculture , 2017, Sensors.

[99]  Simon Blackmore,et al.  Development of a prototype robot and fast path-planning algorithm for static laser weeding , 2017 .

[100]  Changki Mo,et al.  Design, integration, and field evaluation of a robotic apple harvester , 2017, J. Field Robotics.

[101]  Michael Pflanz,et al.  Regression Kriging for Improving Crop Height Models Fusing Ultra-Sonic Sensing with UAV Imagery , 2017, Remote. Sens..

[102]  Panagiota Psirofonia,et al.  Use of Unmanned Aerial Vehicles for Agricultural Applications with Emphasis on Crop Protection: Three Novel Case-studies , 2017 .

[103]  Ingunn Burud,et al.  Exploring Robots and UAVs as Phenotyping Tools in Plant Breeding , 2017 .

[104]  Gang Wu,et al.  Design and implementation of ZigBee wireless sensor and control network system in greenhouse , 2017, 2017 36th Chinese Control Conference (CCC).

[105]  J. Satheeshkumar,et al.  Weed detecting robot in sugarcane fields using fuzzy real time classifier , 2017, Comput. Electron. Agric..

[106]  T. Kraska,et al.  Phenological analysis of unmanned aerial vehicle based time series of barley imagery with high temporal resolution , 2018, Precision Agriculture.

[107]  Raul Morais,et al.  Multi-Temporal Vineyard Monitoring through UAV-Based RGB Imagery , 2018, Remote. Sens..

[108]  Adrien Michez,et al.  How Far Can Consumer-Grade UAV RGB Imagery Describe Crop Production? A 3D and Multitemporal Modeling Approach Applied to Zea mays , 2018, Remote. Sens..

[109]  Thilo Steckel,et al.  Farming in the Era of Industrie 4.0 , 2018 .

[110]  Angelo Parente,et al.  Sensor-based irrigation management of soilless basil using a new smart irrigation system: Effects of set-point on plant physiological responses and crop performance , 2018 .

[111]  Andreas Kamilaris,et al.  Deep learning in agriculture: A survey , 2018, Comput. Electron. Agric..

[112]  Andrey Ronzhin,et al.  Trends in Development of UAV-UGV Cooperation Approaches in Precision Agriculture , 2018, ICR.

[113]  Patrizia Busato,et al.  Machine Learning in Agriculture: A Review , 2018, Sensors.

[114]  Salah Sukkarieh,et al.  Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review , 2018, Comput. Electron. Agric..

[115]  Ioannis D. Moscholios,et al.  Towards Distributed Data Management in Fog Computing , 2018, Wirel. Commun. Mob. Comput..

[116]  Arturo Alvino,et al.  Detection of homogeneous wheat areas using multi-temporal UAS images and ground truth data analyzed by cluster analysis , 2018 .

[117]  Alessandro Matese,et al.  Practical Applications of a Multisensor UAV Platform Based on Multispectral, Thermal and RGB High Resolution Images in Precision Viticulture , 2018, Agriculture.

[118]  Ricardo Jardim-Gonçalves,et al.  An IoT Agriculture System Using FIWARE , 2018, 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC).

[119]  Jorge Torres-Sánchez,et al.  Mapping the 3D structure of almond trees using UAV acquired photogrammetric point clouds and object-based image analysis , 2018, Biosystems Engineering.

[120]  L. Quebrajo,et al.  Linking thermal imaging and soil remote sensing to enhance irrigation management of sugar beet , 2018 .

[121]  George C. Zalidis,et al.  Identification of purple spot disease on asparagus crops across spatial and spectral scales , 2018, Comput. Electron. Agric..

[122]  Andrey Somov,et al.  Pervasive Agriculture: IoT-Enabled Greenhouse for Plant Growth Control , 2018, IEEE Pervasive Computing.

[123]  I. Fernández García,et al.  Coupling irrigation scheduling with solar energy production in a smart irrigation management system , 2018 .

[124]  Andreas Tewes,et al.  Towards Remote Estimation of Radiation Use Efficiency in Maize Using UAV-Based Low-Cost Camera Imagery , 2018 .

[125]  Duke M. Bulanon,et al.  Machine vision for orchard navigation , 2018, Comput. Ind..

[126]  Peter Surový,et al.  Automatic detection and quantification of wild game crop damage using an unmanned aerial vehicle (UAV) equipped with an optical sensor payload: a case study in wheat , 2018 .

[127]  Sylvain Villette,et al.  Unsupervised Classification Algorithm for Early Weed Detection in Row-Crops by Combining Spatial and Spectral Information , 2018, Remote. Sens..

[128]  Stefania Matteoli,et al.  Smart farming: Opportunities, challenges and technology enablers , 2018, 2018 IoT Vertical and Topical Summit on Agriculture - Tuscany (IOT Tuscany).

[129]  G. Mozgeris,et al.  Imaging from manned ultra-light and unmanned aerial vehicles for estimating properties of spring wheat , 2018, Precision Agriculture.

[130]  José Santa,et al.  Smart farming IoT platform based on edge and cloud computing , 2019, Biosystems Engineering.

[131]  Roland Siegwart,et al.  AgriColMap: Aerial-Ground Collaborative 3D Mapping for Precision Farming , 2018, IEEE Robotics and Automation Letters.

[132]  Emilio Gil,et al.  Development of canopy vigour maps using UAV for site-specific management during vineyard spraying process , 2019, Precision Agriculture.

[133]  Nuno Silva,et al.  mySense: A comprehensive data management environment to improve precision agriculture practices , 2019, Comput. Electron. Agric..

[134]  Giovanni Muscato,et al.  A Small Versatile Electrical Robot for Autonomous Spraying in Agriculture , 2019, AgriEngineering.

[135]  Daniele Nardi,et al.  Crop and Weeds Classification for Precision Agriculture Using Context-Independent Pixel-Wise Segmentation , 2019, 2019 Third IEEE International Conference on Robotic Computing (IRC).

[136]  João Valente,et al.  A Comprehensive Study of the Potential Application of Flying Ethylene-Sensitive Sensors for Ripeness Detection in Apple Orchards , 2019, Sensors.

[137]  Beatriz Rey,et al.  Xf-Rovim. A Field Robot to Detect Olive Trees Infected by Xylella Fastidiosa Using Proximal Sensing , 2019, Remote. Sens..

[138]  Jose L. Casanova,et al.  Potato Yield Prediction Using Machine Learning Techniques and Sentinel 2 Data , 2019, Remote. Sens..

[139]  Cristina Barrado,et al.  On-the-Fly Olive Tree Counting Using a UAS and Cloud Services , 2019, Remote. Sens..

[140]  Raul Morais,et al.  Localization Based on Natural Features Detector for Steep Slope Vineyards , 2019, J. Intell. Robotic Syst..

[141]  Andreas Burkart,et al.  Quantifying Lodging Percentage and Lodging Severity Using a UAV-Based Canopy Height Model Combined with an Objective Threshold Approach , 2019, Remote. Sens..

[142]  Juan Agüera,et al.  Spray and economics assessment of a UAV-based ultra-low-volume application in olive and citrus orchards , 2019, Precision Agriculture.

[143]  A. Bregt,et al.  UAV based soil salinity assessment of cropland , 2019, Geoderma.

[144]  Thomas Lagkas,et al.  A compilation of UAV applications for precision agriculture , 2020, Comput. Networks.

[145]  Anastasios A. Economides,et al.  FANETs in Agriculture - A routing protocol survey , 2020, Internet Things.

[146]  Thomas Lagkas,et al.  Towards smart farming: Systems, frameworks and exploitation of multiple sources , 2020, Comput. Networks.