Discovery of Probabilistic Mappings between Taxonomies: Principles and Experiments

In this paper, we investigate a principled approach for defining and discovering probabilistic mappings between two taxonomies. First, we compare two ways of modeling probabilistic mappings which are compatible with the logical constraints declared in each taxonomy. Then we describe a generate and test algorithm whichminimizes the number of calls to the probability estimator for determining those mappings whose probability exceeds a certain threshold. Finally, we provide an experimental analysis of this approach.

[1]  J. Euzenat,et al.  Ontology Matching , 2007, Springer Berlin Heidelberg.

[2]  Gerd Stumme,et al.  FCA-MERGE: Bottom-Up Merging of Ontologies , 2001, IJCAI.

[3]  Dan Suciu,et al.  Answering Queries from Statistics and Probabilistic Views , 2005, VLDB.

[4]  Heiner Stuckenschmidt,et al.  Results of the Ontology Alignment Evaluation Initiative , 2007 .

[5]  Nathalie Pernelle,et al.  Combining a Logical and a Numerical Method for Data Reconciliation , 2009, J. Data Semant..

[6]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[7]  AnHai Doan,et al.  Learning Mappings between Data Schemas , 2000 .

[8]  Silvana Castano,et al.  H-MATCH: an Algorithm for Dynamically Matching Ontologies in Peer-based Systems , 2003, SWDB.

[9]  Stefan Schlobach,et al.  An Empirical Study of Instance-Based Ontology Matching , 2007, ISWC/ASWC.

[10]  Erhard Rahm,et al.  COMA - A System for Flexible Combination of Schema Matching Approaches , 2002, VLDB.

[11]  Ryutaro Ichise,et al.  Integrating Multiple Internet Directories by Instance-based Learning , 2003, IJCAI.

[12]  Silvana Castano,et al.  Results of the HMatch Ontology Matchmaker in OAEI 2006 , 2006, Ontology Matching.

[13]  Jérôme Euzenat,et al.  Similarity-Based Ontology Alignment in OWL-Lite , 2004, ECAI.

[14]  Erhard Rahm,et al.  Generic Schema Matching with Cupid , 2001, VLDB.

[15]  Richard Statman,et al.  On the Structure of Armstrong Relations for Functional Dependencies , 1984, JACM.

[16]  Jérôme David,et al.  An Interactive, Asymmetric and Extensional Method for Matching Conceptual Hierarchies , 2006, EMOI-INTEROP.

[17]  Pedro M. Domingos,et al.  Learning to map between ontologies on the semantic web , 2002, WWW '02.

[18]  Morris H. DeGroot,et al.  Optimal Statistical Decisions: DeGroot/Statistical Decisions WCL , 2005 .

[19]  Alon Y. Halevy,et al.  P-CLASSIC: A Tractable Probablistic Description Logic , 1997, AAAI/IAAI.

[20]  Ernest W. Adams,et al.  A primer of probability logic , 1996 .

[21]  Kurt Sandkuhl,et al.  A Survey of Exploiting WordNet in Ontology Matching , 2008, IFIP AI.

[22]  AnHai Doan,et al.  Corpus-based schema matching , 2005, 21st International Conference on Data Engineering (ICDE'05).

[23]  Phokion G. Kolaitis,et al.  Semi-Automatic Schema Integration in Clio , 2007, VLDB.

[24]  Chantal Reynaud,et al.  Alignment-Based Partitioning of Large-Scale Ontologies , 2009, EGC.

[25]  Ian H. Witten,et al.  Data Mining: Practical Machine Learning Tools and Techniques, 3/E , 2014 .

[26]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[27]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[28]  Alon Y. Halevy,et al.  Data integration with uncertainty , 2007, The VLDB Journal.

[29]  Jennifer Widom,et al.  ULDBs: databases with uncertainty and lineage , 2006, VLDB.

[30]  Luciano Serafini,et al.  An algorithm for matching contextualized schemas via SAT , 2003 .

[31]  Ganesh Ramesh,et al.  Feasible itemset distributions in data mining: theory and application , 2003, PODS '03.

[32]  Ryutaro Ichise,et al.  Discovering Relationships Among Catalogs , 2004, Discovery Science.

[33]  Fausto Giunchiglia,et al.  S-Match: an Algorithm and an Implementation of Semantic Matching , 2004, ESWS.

[34]  Silvana Castano,et al.  Mapping Validation by Probabilistic Reasoning , 2008, ESWC.

[35]  Erhard Rahm,et al.  Similarity flooding: a versatile graph matching algorithm and its application to schema matching , 2002, Proceedings 18th International Conference on Data Engineering.

[36]  Alexander Dekhtyar,et al.  Information Retrieval , 2018, Lecture Notes in Computer Science.

[37]  Jérôme Euzenat,et al.  Ten Challenges for Ontology Matching , 2008, OTM Conferences.

[38]  Erhard Rahm,et al.  Schema and ontology matching with COMA++ , 2005, SIGMOD '05.

[39]  Umberto Straccia,et al.  Information retrieval and machine learning for probabilistic schema matching , 2005, CIKM '05.

[40]  Baowen Xu,et al.  Lily: Ontology Alignment Results for OAEI 2008 , 2008, OM.

[41]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[42]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[43]  Jérôme Euzenat,et al.  Semantic Precision and Recall for Ontology Alignment Evaluation , 2007, IJCAI.

[44]  François Goasdoué,et al.  Distributed Reasoning in a Peer-to-Peer Setting , 2004, ECAI.

[45]  Philip Resnik,et al.  Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to Problems of Ambiguity in Natural Language , 1999, J. Artif. Intell. Res..

[46]  Ronald L. Rivest,et al.  Introduction to Algorithms, Second Edition , 2001 .

[47]  Chantal Reynaud,et al.  TaxoMap in the OAEI 2009 Alignment Contest , 2009, OM.

[48]  Jérôme Euzenat,et al.  A Survey of Schema-Based Matching Approaches , 2005, J. Data Semant..

[49]  L. Stein,et al.  OWL Web Ontology Language - Reference , 2004 .

[50]  Ian Witten,et al.  Data Mining , 2000 .

[51]  Chris Clifton,et al.  SEMINT: A tool for identifying attribute correspondences in heterogeneous databases using neural networks , 2000, Data Knowl. Eng..

[52]  Chantal Reynaud,et al.  TaxoMap in the OAEI 2008 Alignment Contest , 2008, OM.

[53]  Erhard Rahm,et al.  A survey of approaches to automatic schema matching , 2001, The VLDB Journal.

[54]  Ian Horrocks,et al.  OWL Web Ontology Language Reference-W3C Recommen-dation , 2004 .

[55]  Guy Louchard,et al.  Boltzmann Samplers for the Random Generation of Combinatorial Structures , 2004, Combinatorics, Probability and Computing.

[56]  Ming Mao,et al.  PRIOR System: Results for OAEI 2006 , 2006, Ontology Matching.

[57]  Avigdor Gal,et al.  Managing Uncertainty in Schema Matching with Top-K Schema Mappings , 2006, J. Data Semant..

[58]  Ronald Fagin,et al.  Horn clauses and database dependencies , 1982, JACM.

[59]  Gary William Flake,et al.  Efficient SVM Regression Training with SMO , 2002, Machine Learning.

[60]  Heiner Stuckenschmidt,et al.  Results of the Ontology Alignment Evaluation Initiative 2007 , 2006, OM.

[61]  Gwenn Englebienne,et al.  Learning Concept Mappings from Instance Similarity , 2008, SEMWEB.

[62]  Umberto Straccia,et al.  A Probabilistic, Logic-Based Framework for Automated Web Directory Alignment , 2006 .

[63]  Avigdor Gal,et al.  A framework for modeling and evaluating automatic semantic reconciliation , 2005, The VLDB Journal.