Temperature dependence of electroluminescence intensity of green and blue InGaN single-quantum-well light-emitting diodes

Temperature dependence of electroluminescence (EL) spectral intensity of the super-bright green and blue InGaN single-quantum-well (SQW) light-emitting diodes has been studied over a wide temperature range (T=15–300 K) under a weak injection current of 0.1 mA. It is found that when T is slightly decreased to 140 K, the EL intensity efficiently increases, as usually seen due to the improved quantum efficiency. However, with further decrease of T down to 15 K, it drastically decreases due to reduced carrier capture by SQW and trapping by nonradiative recombination centers. This unusual temperature-dependent evolution of the EL intensity shows a striking difference between green and blue SQW diodes owing to the different potential depths of the InGaN well. The importance of efficient carrier capture processes by localized tail states within the SQW is thus pointed out for enhancement of radiative recombination of injected carriers in the presence of the high-density dislocations.