A modeling framework for the integration of electrical and thermal energy systems in greenhouses

[1]  E. Fabrizio,et al.  Energy performance and climate control in mechanically ventilated greenhouses: A dynamic modelling-based assessment and investigation , 2021, Applied Energy.

[2]  F. Kempkes,et al.  GreenLight – An open source model for greenhouses with supplemental lighting: Evaluation of heat requirements under LED and HPS lamps , 2020 .

[3]  Kevin Sartor,et al.  Economic and environmental comparison of a centralized and a decentralized heating production for a district heating network implementation , 2018 .

[4]  M. Kacira,et al.  Development and analysis of dynamical mathematical models of greenhouse climate: A review , 2018, European Journal of Horticultural Science.

[5]  Sylvain Quoilin,et al.  The joint effect of centralised cogeneration plants and thermal storage on the efficiency and cost of the power system , 2018 .

[6]  Dirk Saelens,et al.  Implementation and verification of the IDEAS building energy simulation library , 2018 .

[7]  Iain Staffell,et al.  The importance of open data and software: Is energy research lagging behind? , 2017 .

[8]  S. Quoilin,et al.  Quantifying self-consumption linked to solar home battery systems: Statistical analysis and economic assessment , 2016 .

[9]  Francesco Casella,et al.  Simulation of Large-Scale Models in Modelica: State of the Art and Future Perspectives , 2015 .

[10]  Vincent Lemort,et al.  ThermoCycle: A Modelica library for the simulation of thermodynamic systems , 2014 .

[11]  Thierry S. Nouidui,et al.  Modelica Buildings library , 2014 .

[12]  Mehmet Esen,et al.  Experimental evaluation of using various renewable energy sources for heating a greenhouse , 2013 .

[13]  E. J. van Henten,et al.  A methodology for model-based greenhouse design: Part 2, description and validation of a tomato yield model , 2011 .

[14]  C. Stanghellini,et al.  A methodology for model-based greenhouse design: Part 1, a greenhouse climate model for a broad range of designs and climates , 2011 .

[15]  Silke Hemming,et al.  Simple greenhouse climate model as a design tool for greenhouses in tropical lowland , 2007 .

[16]  Janneke A. Dieleman,et al.  Energy screens in tomato: determining the optimal opening strategy , 2006 .

[17]  H. F. de Zwart,et al.  Multiple-day temperature settings on the basis of the assimilate balance: a simulation study , 2006 .

[18]  Esther Meinen,et al.  Energy saving in greenhouses: optimal use of climate conditions and crop management , 2006 .

[19]  Francesco Casella,et al.  Modelling of thermo-hydraulic power generation processes using Modelica , 2006 .

[20]  E. J. van Henten,et al.  Optimisation of CO2 and Temperature in Terms of Crop Growth and Energy Use , 2005 .

[21]  Cecilia Stanghellini,et al.  Simulation of Greenhouse Management in the Subtropics, Part I: Model Validation and Scenario Study for the Winter Season , 2005 .

[22]  Raphael Linker,et al.  Description and calibration of a dynamic model for lettuce grown in a nitrate-limiting environment , 2004, Math. Comput. Model..

[23]  Niels Ehler,et al.  IntelliGrow: a greenhouse component-based climate control system , 2003, Environ. Model. Softw..

[24]  Ep Heuvelink,et al.  Modelling biomass production and yield of horticultural crops: a review , 1998 .

[25]  H. F. de Zwart,et al.  A simulation model to estimate prospectives of energy saving measures in horticulture , 1997 .

[26]  Marc Tchamitchian,et al.  Optimal temperature regimes for a greenhouse crop with a carbohydrate pool: A modelling study , 1994 .

[27]  Thierry Boulard,et al.  A simple greenhouse climate control model incorporating effects of ventilation and evaporative cooling , 1993 .

[28]  R. Rabbinge,et al.  Simulation and systems management in crop protection , 1989, Plant Growth Regulation.

[29]  B. J. Bailey Control strategies to enhance the performance of greenhouse thermal screens , 1988 .

[30]  C. Dons,et al.  Effect of CO2 enrichment on photosynthesis, growth and yield of tomato , 1983 .

[31]  D. K. Butt Solar and Terrestrial Radiation , 1978 .

[32]  R. V. Ooteghem Optimal Control Design for a Solar Greenhouse , 2010 .

[33]  Francesco Casella,et al.  Dynamic Simulation of a Biomass-Fired Steam Power Plant: A Comparison Between Causal and A-Causal Modular Modeling , 2007 .

[34]  A. Miguel,et al.  Transport phenomena through porous screens and openings: from theory to greenhouse practice. , 1998 .

[35]  de H.F. Zwart,et al.  Analyzing energy-saving options in greenhouse cultivation using a simulation model , 1996 .

[36]  Ep Heuvelink,et al.  Tomato growth and yield : quantitative analysis and synthesis , 1996 .

[37]  H. Challa,et al.  Development, calibration and validation of a greenhouse tomato growth model: I. Description of the model☆ , 1993 .

[38]  P. Teng,et al.  Simulation and systems management in crop protection , 1993 .

[39]  Luc Balemans,et al.  Assessment of criteria for energetic effectiveness of greenhouse screens , 1989 .

[40]  P. A. Leffelaar,et al.  Some elements of dynamic simulation. , 1989 .

[41]  R. Grange,et al.  A review of the effects of atmospheric humidity on the growth of horticultural crops , 1987 .

[42]  C. Stanghellini,et al.  Transpiration of greenhouse crops : an aid to climate management , 1987 .

[43]  G. Bot Greenhouse climate: from physical processes to a dynamic model , 1983 .