P , NP and mathematics – a computational complexity perspective

The P versus NP question distinguished itself as the central question of theoretical computer science nearly four decades ago. The quest to resolve it, and more generally, to understand the power and limits of efficient computation, has led to the development of computational complexity theory. While this mathematical discipline in general, and the P vs. NP problem in particular, have gained prominence within the mathematics community in the past decade, it is still largely viewed as a problem of computer science. In this paper I shall try to explain why this problem, and others in computational complexity, are not only mathematical problems but also problems about mathematics, faced by the working mathematician. I shall describe the underlying concepts and problems, the attempts to understand and solve them, and some of the research directions this led us to. I shall explain some of the important results, as well as the major goals and conjectures which still elude us. All this will hopefully give a taste of the motivations, richness and interconnectedness of our field. I shall conclude with a few non computational problems, which capture P vs. NP and related computational complexity problems, hopefully inviting more mathematicians to attack them as well. I believe it important to give many examples, and to underlie the intuition (and sometimes, philosophy) behind definitions and results. This may slow the pace of this article for some, in the hope to make it clearer to others.

[1]  Endre Szemerédi,et al.  Many hard examples for resolution , 1988, JACM.

[2]  Paul S. Wang,et al.  Polynomial Factorization Sharp Bounds, Efficient Algorithms , 1993, J. Symb. Comput..

[3]  Alexander A. Razborov,et al.  Natural Proofs , 1997, J. Comput. Syst. Sci..

[4]  Sanjeev Arora Probabilistic checking of proofs and hardness of approximation problems , 1995 .

[5]  Manuel Blum,et al.  How to generate cryptographically strong sequences of pseudo random bits , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[6]  Oded Goldreich,et al.  Notes on Levin's Theory of Average-Case Complexity , 1997, Studies in Complexity and Cryptography.

[7]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[8]  Alexander A. Razborov,et al.  Lower bounds for the polynomial calculus , 1998, computational complexity.

[9]  Russell Impagliazzo,et al.  Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds , 2003, STOC '03.

[10]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[11]  Kurt Mehlhorn,et al.  Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity , 1990 .

[12]  J. M. Foster,et al.  Mathematical theory of automata , 1965 .

[13]  Oded Goldreich,et al.  Modern Cryptography, Probabilistic Proofs and Pseudorandomness , 1998, Algorithms and Combinatorics.

[14]  Juris Hartmanis,et al.  Gödel, von Neumann and the P =? NP Problem , 1989, Current Trends in Theoretical Computer Science.

[15]  A. Razborov Lower bounds on monotone complexity of the logical permanent , 1985 .

[16]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[17]  DyerMartin,et al.  A random polynomial-time algorithm for approximating the volume of convex bodies , 1991 .

[18]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[19]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory, Ser. B.

[20]  Leslie G. Valiant,et al.  Completeness classes in algebra , 1979, STOC.

[21]  Russell Impagliazzo,et al.  Using the Groebner basis algorithm to find proofs of unsatisfiability , 1996, STOC '96.

[22]  Andrew Chi-Chih Yao,et al.  Theory and application of trapdoor functions , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[23]  Avi Wigderson,et al.  Computational Complexity Theory , 2004, IAS / Park City mathematics series.

[24]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[25]  Yehoshua Bar-Hillel,et al.  The Intrinsic Computational Difficulty of Functions , 1969 .

[26]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[27]  László Lovász,et al.  Interactive proofs and the hardness of approximating cliques , 1996, JACM.

[28]  Stephen A. Cook,et al.  The Relative Efficiency of Propositional Proof Systems , 1979, Journal of Symbolic Logic.

[29]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[30]  Carsten Lund,et al.  Algebraic methods for interactive proof systems , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[31]  Jan van Leeuwen,et al.  Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity , 1994 .

[32]  Johan Håstad,et al.  Clique is hard to approximate within n/sup 1-/spl epsiv// , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[33]  László Babai,et al.  Trading group theory for randomness , 1985, STOC '85.

[34]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[35]  N. V. Vinodchandran AMexp⊈(NP∩coNP)/poly , 2004 .

[36]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[37]  Leonid A. Levin,et al.  One-way functions and pseudorandom generators , 1985, STOC '85.

[38]  Volker Strassen,et al.  A Fast Monte-Carlo Test for Primality , 1977, SIAM J. Comput..

[39]  Lance Fortnow,et al.  The Role of Relativization in Complexity Theory , 1994, Bull. EATCS.

[40]  A. O. Houcine On hyperbolic groups , 2006 .

[41]  V. Arnold,et al.  Mathematics: Frontiers and Perspectives , 2000 .

[42]  李幼升,et al.  Ph , 1989 .

[43]  Silvio Micali,et al.  The knowledge complexity of interactive proof-systems , 1985, STOC '85.

[44]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.

[45]  J. Håstad Clique is hard to approximate withinn1−ε , 1999 .

[46]  Jeffrey C. Lagarias,et al.  The computational complexity of knot and link problems , 1999, JACM.

[47]  L. Fortnow Recent Developments in Explicit Constructions of Extractors , 2002 .

[48]  Alexander A. Razborov Resolution lower bounds for perfect matching principles , 2004, J. Comput. Syst. Sci..

[49]  Maria E. Orlowska,et al.  A new polynomial time algorithm for BCNF relational database design , 1992, Inf. Syst..

[50]  Richard M. Karp,et al.  Reducibility among combinatorial problems" in complexity of computer computations , 1972 .

[51]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[52]  Gary L. Miller,et al.  Riemann's Hypothesis and tests for primality , 1975, STOC.

[53]  Avi Wigderson,et al.  Randomness vs Time: Derandomization under a Uniform Assumption , 2001, J. Comput. Syst. Sci..

[54]  Irit Dinur,et al.  The PCP theorem by gap amplification , 2006, STOC.

[55]  Miklós Ajtai,et al.  Generating hard instances of lattice problems (extended abstract) , 1996, STOC '96.

[56]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[57]  John T. Gill,et al.  Computational complexity of probabilistic Turing machines , 1974, STOC '74.

[58]  Martin E. Dyer,et al.  A random polynomial-time algorithm for approximating the volume of convex bodies , 1991, JACM.

[59]  Silvio Micali,et al.  How to play ANY mental game , 1987, STOC.

[60]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[61]  M. Gromov,et al.  Random walk in random groups , 2003 .

[62]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[63]  Pavel Pudlák,et al.  Lower bounds for resolution and cutting plane proofs and monotone computations , 1997, Journal of Symbolic Logic.

[64]  W. Thurston,et al.  The Computational Complexity of Knot Genus and Spanning Area , 2002, math/0205057.

[65]  Manindra Agrawal,et al.  PRIMES is in P , 2004 .

[66]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[67]  J. Lagarias,et al.  The number of Reidemeister moves needed for unknotting , 1998, math/9807012.

[68]  Shafi Goldwasser,et al.  Private coins versus public coins in interactive proof systems , 1986, STOC '86.

[69]  Noga Alon,et al.  The monotone circuit complexity of boolean functions , 1987, Comb..

[70]  ChallengesPaul ZimmermannInria Lorrainezimmermann Polynomial Factorization , 1996 .

[71]  S. Smale Mathematical problems for the next century , 1998 .

[72]  Q. Zhang A NEW POLYNOMIAL-TIME ALGORITHM FOR LP , 1996 .

[73]  Leonard M. Adleman,et al.  Computational complexity of decision procedures for polynomials , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[74]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[75]  Christos H. Papadimitriou,et al.  On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..

[76]  Armin Haken,et al.  The Intractability of Resolution , 1985, Theor. Comput. Sci..

[77]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[78]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[79]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[80]  Christos H. Papadimitriou,et al.  NP-Completeness: A Retrospective , 1997, ICALP.

[81]  Éva Tardos,et al.  The gap between monotone and non-monotone circuit complexity is exponential , 1988, Comb..

[82]  Avi Wigderson,et al.  Monotone circuits for connectivity require super-logarithmic depth , 1990, STOC '88.

[83]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[84]  Miklós Ajtai,et al.  Generating Hard Instances of Lattice Problems , 1996, Electron. Colloquium Comput. Complex..

[85]  Russell Impagliazzo,et al.  A personal view of average-case complexity , 1995, Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference.

[86]  A RazborovAlexander Lower bounds for the polynomial calculus , 1998 .

[87]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[88]  Michael Sipser,et al.  The history and status of the P versus NP question , 1992, STOC '92.

[89]  Avi Wigderson,et al.  Efficient Identification Schemes Using Two Prover Interactive Proofs , 1989, CRYPTO.

[90]  Noam Nisan,et al.  Hardness vs Randomness , 1994, J. Comput. Syst. Sci..

[91]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[92]  R. Solovay,et al.  Relativizations of the $\mathcal{P} = ?\mathcal{NP}$ Question , 1975 .

[93]  Silvio Micali,et al.  Probabilistic Encryption , 1984, J. Comput. Syst. Sci..

[94]  Toniann Pitassi,et al.  Propositional Proof Complexity: Past, Present and Future , 2001, Bull. EATCS.

[95]  Silvio Micali,et al.  Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems , 1991, JACM.

[96]  Andrew Granville,et al.  It is easy to determine whether a given integer is prime , 2004 .

[97]  Avi Wigderson,et al.  Randomness vs. time: de-randomization under a uniform assumption , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[98]  R. Impagliazzo,et al.  P=BPP unless E has sub-exponential circuits: Derandomizing the XOR Lemma , 2002 .

[99]  Miklós Ajtai,et al.  ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..

[100]  G. Harcos,et al.  The Institute for Advanced Study , 1933, Nature.

[101]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[102]  Arnold Schönhage,et al.  Schnelle Multiplikation großer Zahlen , 1971, Computing.

[103]  M. Rabin Probabilistic algorithm for testing primality , 1980 .

[104]  Eli Ben-Sasson,et al.  Short proofs are narrow—resolution made simple , 2001, JACM.

[105]  Adi Shamir,et al.  IP = PSPACE , 1992, JACM.

[106]  Kazuya Kato,et al.  Number Theory 1 , 1999 .

[107]  A. Yao How to generate and exchange secrets , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[108]  John Gill,et al.  Relativizations of the P =? NP Question , 1975, SIAM J. Comput..

[109]  RobertsonNeil,et al.  Graph minors. XIII , 1994 .

[110]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[111]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[112]  Ravi B. Boppana,et al.  The Complexity of Finite Functions , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[113]  László Babai,et al.  E-mail and the unexpected power of interaction , 1990, Proceedings Fifth Annual Structure in Complexity Theory Conference.

[114]  Ran Raz,et al.  Monotone circuits for matching require linear depth , 1990, STOC '90.

[115]  Leonid A. Levin,et al.  Average Case Complete Problems , 1986, SIAM J. Comput..

[116]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[117]  Eitan M. Gurari,et al.  Introduction to the theory of computation , 1989 .