Smooth and Sparse Optimal Transport

Entropic regularization is quickly emerging as a new standard in optimal transport (OT). It enables to cast the OT computation as a differentiable and unconstrained convex optimization problem, which can be efficiently solved using the Sinkhorn algorithm. However, entropy keeps the transportation plan strictly positive and therefore completely dense, unlike unregularized OT. This lack of sparsity can be problematic in applications where the transportation plan itself is of interest. In this paper, we explore regularizing the primal and dual OT formulations with a strongly convex term, which corresponds to relaxing the dual and primal constraints with smooth approximations. We show how to incorporate squared $2$-norm and group lasso regularizations within that framework, leading to sparse and group-sparse transportation plans. On the theoretical side, we bound the approximation error introduced by regularizing the primal and dual formulations. Our results suggest that, for the regularized primal, the approximation error can often be smaller with squared $2$-norm than with entropic regularization. We showcase our proposed framework on the task of color transfer.

[1]  J. Danskin The Theory of Max-Min, with Applications , 1966 .

[2]  Richard Sinkhorn,et al.  Concerning nonnegative matrices and doubly stochastic matrices , 1967 .

[3]  R. Dykstra An Iterative Procedure for Obtaining $I$-Projections onto the Intersection of Convex Sets , 1985 .

[4]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[5]  D. Romero Easy transportation-like problems onK-dimensional arrays , 1990 .

[6]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[7]  Roberto Cominetti,et al.  Asymptotic analysis of the exponential penalty trajectory in linear programming , 1994, Math. Program..

[8]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[9]  C. Villani Topics in Optimal Transportation , 2003 .

[10]  J. Benamou NUMERICAL RESOLUTION OF AN \UNBALANCED" MASS TRANSPORT PROBLEM , 2003 .

[11]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[12]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[13]  François Pitié,et al.  Automated colour grading using colour distribution transfer , 2007, Comput. Vis. Image Underst..

[14]  Shai Shalev-Shwartz,et al.  Online learning: theory, algorithms and applications (למידה מקוונת.) , 2007 .

[15]  Yoram Singer,et al.  Efficient projections onto the l1-ball for learning in high dimensions , 2008, ICML '08.

[16]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[17]  A. Fiacco A Finite Algorithm for Finding the Projection of a Point onto the Canonical Simplex of R " , 2009 .

[18]  Renato D. C. Monteiro,et al.  Group Sparsity in Nonnegative Matrix Factorization , 2012, SDM.

[19]  Ambuj Tewari,et al.  Regularization Techniques for Learning with Matrices , 2009, J. Mach. Learn. Res..

[20]  Tommi S. Jaakkola,et al.  Convergence Rate Analysis of MAP Coordinate Minimization Algorithms , 2012, NIPS.

[21]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[22]  Christian L'eonard A survey of the Schr\"odinger problem and some of its connections with optimal transport , 2013, 1308.0215.

[23]  Mark W. Schmidt,et al.  Block-Coordinate Frank-Wolfe Optimization for Structural SVMs , 2012, ICML.

[24]  Francis Bach,et al.  SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives , 2014, NIPS.

[25]  Julien Rabin,et al.  Adaptive color transfer with relaxed optimal transport , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[26]  Arnaud Doucet,et al.  Fast Computation of Wasserstein Barycenters , 2013, ICML.

[27]  Matt J. Kusner,et al.  From Word Embeddings To Document Distances , 2015, ICML.

[28]  Ofer Meshi,et al.  Smooth and Strong: MAP Inference with Linear Convergence , 2015, NIPS.

[29]  Hossein Mobahi,et al.  Learning with a Wasserstein Loss , 2015, NIPS.

[30]  Gabriel Peyré,et al.  Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..

[31]  Tamir Hazan,et al.  Efficient Training of Structured SVMs via Soft Constraints , 2015, AISTATS.

[32]  Gabriel Peyré,et al.  Fast Optimal Transport Averaging of Neuroimaging Data , 2015, IPMI.

[33]  Gabriel Peyré,et al.  A Smoothed Dual Approach for Variational Wasserstein Problems , 2015, SIAM J. Imaging Sci..

[34]  Gabriel Peyré,et al.  Stochastic Optimization for Large-scale Optimal Transport , 2016, NIPS.

[35]  S. Osher,et al.  Fast Algorithms for Earth Mover's Distance Based on Optimal Transport and L1 Type Regularization I , 2016, 1609.07092.

[36]  David Romero,et al.  On the closest point to the origin in transportation polytopes , 2016, Discret. Appl. Math..

[37]  Gabriel Peyré,et al.  Fast Dictionary Learning with a Smoothed Wasserstein Loss , 2016, AISTATS.

[38]  Jason Altschuler,et al.  Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration , 2017, NIPS.

[39]  Mark W. Schmidt,et al.  Minimizing finite sums with the stochastic average gradient , 2013, Mathematical Programming.

[40]  Nicolas Courty,et al.  Optimal Transport for Domain Adaptation , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Lénaïc Chizat,et al.  Scaling Algorithms for Unbalanced Transport Problems , 2016, 1607.05816.

[42]  Léon Bottou,et al.  Wasserstein Generative Adversarial Networks , 2017, ICML.

[43]  Frank Nielsen,et al.  Tsallis Regularized Optimal Transport and Ecological Inference , 2016, AAAI.

[44]  Fabian Pedregosa,et al.  ASAGA: Asynchronous Parallel SAGA , 2016, AISTATS.

[45]  Nicolas Papadakis,et al.  Regularized Optimal Transport and the Rot Mover's Distance , 2016, J. Mach. Learn. Res..

[46]  Montacer Essid,et al.  Quadratically-Regularized Optimal Transport on Graphs , 2017, SIAM J. Sci. Comput..

[47]  Bernhard Schmitzer,et al.  Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems , 2016, SIAM J. Sci. Comput..

[48]  Francesca P. Carli,et al.  Convex Clustering via Optimal Mass Transport , 2013, 1307.5459.