Combinatorial and Geometrical Origins of Regge Symmetries: Their Manifestations from Spin-Networks to Classical Mechanisms, and Beyond

Tullio Regge discovered new symmetries in 1958, hidden in formulas for calculations of the coupling and recoupling coefficients of quantum angular momentum theory, as developed principally by Wigner and Racah: the only known (limited) application appeared computational. Ten years later, in a paper with Ponzano, Regge provided a semiclassical interpretation showing relevance to the basic geometry of quadrilaterals and tetrahedra, and opening also a promising road to quantum gravity, still currently being explored. New facets are here indicated, continuing a sequence of papers in this Lecture Notes series and elsewhere. We emphasize how an integrated combinatorial and geometrical interpretation is emerging, and also examples from the quantum mechanics of atoms and molecules are briefly documented. Attention is dedicated to the recently pointed out connection between the quantum mechanics of spin recouplings and the Grashof analysis of four-bar linkages, with perspective implications at the molecular level.

[1]  Klaus Schulten,et al.  Exact recursive evaluation of 3j- and 6j-coefficients for quantum- mechanical coupling of angular momenta , 1975 .

[2]  Vincenzo Aquilanti,et al.  Orthogonal polynomials of a discrete variable as expansion basis sets in quantum mechanics: Hyperquantization algorithm , 2003 .

[3]  Yana Mohanty The Regge symmetry is a scissors congruence in hyperbolic space , 2003 .

[4]  Linus Pauling,et al.  THE NATURE OF THE CHEMICAL BOND. APPLICATION OF RESULTS OBTAINED FROM THE QUANTUM MECHANICS AND FROM A THEORY OF PARAMAGNETIC SUSCEPTIBILITY TO THE STRUCTURE OF MOLECULES , 1931 .

[5]  Rene F. Swarttouw,et al.  Hypergeometric Orthogonal Polynomials , 2010 .

[6]  V. Bargmann,et al.  On the Representations of the Rotation Group , 1962 .

[7]  Vincenzo Aquilanti,et al.  Exact computation and large angular momentum asymptotics of 3nj symbols: Semiclassical disentangling of spin networks. , 2008, The Journal of chemical physics.

[8]  Giorgi Khimshiashvili,et al.  Complex geometry of polygonal linkages , 2013 .

[9]  Vincenzo Aquilanti,et al.  d-Dimensional Kepler–Coulomb Sturmians and Hyperspherical Harmonics as Complete Orthonormal Atomic and Molecular Orbitals , 2013 .

[10]  Jean-Marc Lévy-Leblond,et al.  Symmetrical Coupling of Three Angular Momenta , 1965 .

[11]  Vincenzo Aquilanti,et al.  Symmetric Angular Momentum Coupling, the Quantum Volume Operator and the 7-spin Network: A Computational Perspective , 2014, ICCSA.

[12]  Vincenzo Aquilanti,et al.  Combinatorics of angular momentum recoupling theory: spin networks, their asymptotics and applications , 2009 .

[13]  A. Bincer,et al.  Interpretation of the Symmetry of the Clebsch‐Gordan Coefficients Discovered by Regge , 1970 .

[14]  Vincenzo Aquilanti,et al.  Semiclassical analysis of Wigner 3j-symbol , 2007, quant-ph/0703104.

[15]  G. Grossi,et al.  Hund's cases for rotating diatomic molecules and for atomic collisions: angular momentum coupling schemes and orbital alignment , 1996 .

[16]  Vincenzo Aquilanti,et al.  Spherical and Hyperbolic Spin Networks: The q-extensions of Wigner-Racah 6j Coefficients and General Orthogonal Discrete Basis Sets in Applied Quantum Mechanics , 2017, ICCSA.

[17]  E. Wigner,et al.  Book Reviews: Group Theory. And Its Application to the Quantum Mechanics of Atomic Spectra , 1959 .

[18]  R. Littlejohn,et al.  Uniform semiclassical approximation for the Wigner 6j-symbol in terms of rotation matrices. , 2009, The journal of physical chemistry. A.

[19]  David Antin,et al.  100 great problems of elementary mathematics : their history and solution , 1966 .

[20]  Vincenzo Aquilanti,et al.  The d-dimensional hydrogen atom: hyperspherical harmonics as momentum space orbitals and alternative Sturmian basis sets , 1997 .

[21]  Vincenzo Aquilanti,et al.  Discrete analogs of spherical harmonics and their use in quantum mechanics: The hyperquantization algorithm , 1991 .

[22]  M. A. Lohe,et al.  Quantum group symmetry and q-tensor algebras , 1995 .

[23]  Vincenzo Aquilanti,et al.  The Screen Representation of Vector Coupling Coefficients or Wigner 3j Symbols: Exact Computation and Illustration of the Asymptotic Behavior , 2014, ICCSA.

[24]  Vladimir Turaev,et al.  State sum invariants of 3 manifolds and quantum 6j symbols , 1992 .

[25]  M. S. Kil'dyushov HYPERSPHERICAL FUNCTIONS OF TREE TYPE IN THE n-BODY PROBLEM. , 1972 .

[26]  T. Regge,et al.  SEMICLASSICAL LIMIT OF RACAH COEFFICIENTS. , 1969 .

[27]  Vincenzo Aquilanti,et al.  ANGULAR AND HYPERANGULAR MOMENTUM COUPLING COEFFICIENTS AS HAHN POLYNOMIALS , 1995 .

[28]  D. Varshalovich,et al.  Quantum Theory of Angular Momentum , 1988 .

[29]  Roger Anderson,et al.  Discrete Orthogonal Transformations Corresponding to the Discrete Polynomials of the Askey Scheme , 2014, ICCSA.

[30]  C. Daskaloyannis,et al.  Quantum groups and their applications in nuclear physics , 1999 .

[31]  Vincenzo Aquilanti,et al.  Discrete Analogs of Hyperspherical Harmonics and Their Use for the Quantum Mechanical Three Body Problem , 1992 .

[32]  Jun Murakami,et al.  Volume formulas for a spherical tetrahedron , 2010, 1011.2584.

[33]  Vincenzo Aquilanti,et al.  Hyperangular Momentum: Applications to Atomic and Molecular Science , 1996 .

[34]  Vincenzo Aquilanti,et al.  Hyperspherical harmonics as Sturmian orbitals in momentum space: A systematic approach to the few-body Coulomb problem , 2001 .

[35]  Christopher T. Woodward,et al.  Spherical Tetrahedra and Invariants of 3-manifolds , 2004 .

[36]  Vincenzo Aquilanti,et al.  3nj Morphogenesis and semiclassical disentangling. , 2009, The journal of physical chemistry. A.

[37]  Ruth M. Williams 6j-symbols and discrete quantum gravity , 2000 .

[38]  Vincenzo Aquilanti,et al.  Angular momentum coupling schemes in the quantum mechanical treatment of P-state atom collisions , 1980 .

[39]  Vincenzo Aquilanti,et al.  Spin-Coupling Diagrams and Incidence Geometry: A Note on Combinatorial and Quantum-Computational Aspects , 2016, ICCSA.

[40]  V. Aquilanti,et al.  Hyperquantization algorithm. I. Theory for triatomic systems , 1998 .

[41]  Vincenzo Aquilanti,et al.  Hydrogenic orbitals in Momentum space and hyperspherical harmonics: Elliptic Sturmian basis sets , 2003 .

[42]  Vincenzo Aquilanti,et al.  3nj-symbols and harmonic superposition coefficients: an icosahedral abacus , 2001 .

[43]  V. Fock,et al.  Zur Theorie des Wasserstoffatoms , 1935 .

[44]  Vincenzo Aquilanti,et al.  Hyperspherical Symmetry of Hydrogenic Orbitals and Recoupling Coefficients among Alternative Bases , 1998 .

[45]  Vincenzo Aquilanti,et al.  Angular and hyperangular momentum recoupling, harmonic superposition and Racah polynomials: a recursive algorithm , 2001 .

[46]  Vincenzo Aquilanti,et al.  Exact and Asymptotic Computations of Elementary Spin Networks: Classification of the Quantum-Classical Boundaries , 2012, ICCSA.

[47]  Eugenio Bianchi,et al.  The Perturbative Regge-calculus regime of loop quantum gravity , 2007, 0709.2051.

[48]  T. Regge,et al.  Symmetry properties of Clebsch-Gordon’s coefficients , 1958 .

[49]  Donald E. Neville,et al.  A Technique for Solving Recurrence Relations Approximately and Its Application to the 3‐J and 6‐J Symbols , 1971 .

[50]  Tullio Regge,et al.  Simmetry properties of Racah’s coefficients , 1959 .

[51]  Vincenzo Aquilanti,et al.  Hamiltonian dynamics of a quantum of space: hidden symmetries and spectrum of the volume operator, and discrete orthogonal polynomials , 2013, 1301.1949.

[52]  C. Woodward,et al.  6j symbols for $$U_q (\mathfrak{s}\mathfrak{l}_2 )$$ and non-Euclidean tetrahedra , 2006 .

[53]  Vincenzo Aquilanti,et al.  Alternative Sturmian bases and momentum space orbitals: an application to the hydrogen molecular ion , 1996 .

[54]  Vincenzo Aquilanti,et al.  The Screen Representation of Spin Networks: 2D Recurrence, Eigenvalue Equation for 6j Symbols, Geometric Interpretation and Hamiltonian Dynamics , 2013, ICCSA.

[55]  Mizoguchi,et al.  Three-dimensional gravity from the Turaev-Viro invariant. , 1992, Physical review letters.

[56]  Vincenzo Aquilanti,et al.  Couplings and recouplings of four angular momenta: Alternative 9j symbols and spin addition diagrams , 2017, Journal of Molecular Modeling.

[57]  Ivan Izmestiev,et al.  Deformation of Quadrilaterals and Addition on Elliptic Curves , 2015, Moscow Mathematical Journal.

[58]  S. Meshkov,et al.  Theory of Complex Spectra , 1953 .

[59]  Donald E. Neville Volume operator for spin networks with planar or cylindrical symmetry , 2006 .

[60]  Vincenzo Aquilanti,et al.  Semiclassical mechanics of the Wigner 6j-symbol , 2010, 1009.2811.

[61]  Giorgi Khimshiashvili,et al.  Cross-ratios of quadrilateral linkages , 2015 .

[62]  Masahico Saito,et al.  The Classical and Quantum 6j-symbols. , 1995 .

[63]  Vincenzo Aquilanti,et al.  Exact Computation and Asymptotic Approximations of 6j Symbols: Illustration of Their Semiclassical Limits , 2010 .

[64]  Vincenzo Aquilanti,et al.  Screens for Displaying Chirality Changing Mechanisms of a Series of Peroxides and Persulfides from Conformational Structures Computed by Quantum Chemistry , 2017, ICCSA.

[65]  Justin Roberts Classical 6j-symbols and the tetrahedron , 1998 .

[66]  Vincenzo Aquilanti,et al.  The Screen Representation of Spin Networks: Images of 6j Symbols and Semiclassical Features , 2013, ICCSA.

[67]  L. C. Biedenharn,et al.  Quantum Theory of Angular Momentum: A Collection of Reprints and Original Papers , 1965 .

[68]  L. Biedenharn Angular momentum in quantum physics , 1981 .

[69]  V. Aquilanti,et al.  Hydrogenoid orbitals revisited: From Slater orbitals to Coulomb Sturmians# , 2012, Journal of Chemical Sciences.

[70]  Vincenzo Aquilanti,et al.  Hydrogenic elliptic orbitals, Coulomb Sturmian sets, and recoupling coefficients among alternative bases , 2003 .

[71]  V. B. Uvarov,et al.  Classical Orthogonal Polynomials of a Discrete Variable , 1991 .

[72]  Klaus Schulten,et al.  Semiclassical approximations to 3j- and 6j-coefficients for quantum­ mechanical coupling of angular momenta An inverse problem in statistical mechanics Direct determination of the Iwasawa decomposition for noncompact , 1975 .

[73]  Vincenzo Aquilanti,et al.  Harmonic analysis and discrete polynomials. From semiclassical angular momentum theory to the hyperquantization algorithm , 2000 .