Perverse Schobers

The notion of a perverse sheaf, introduced in [BBD], has come to play a central role in algebraic geometry and representation theory. In particular, appropriate categories of perverse sheaves provide “categorifications” of various representation spaces, these spaces being recovered as the Grothedieck groups of the categories. The goal of this paper is to suggest the possibility of categorifying the very concept of a perverse sheaf. In other words, we propose to develop a theory of perverse sheaves not of vector spaces but of triangulated categories.

[1]  D. Nadler Fukaya Categories as Categorical Morse Homology , 2011, 1109.4848.

[2]  M. Kapranov,et al.  Triangulated surfaces in triangulated categories , 2013, 1306.2545.

[3]  R. Bezrukavnikov,et al.  Affine braid group actions on derived categories of Springer resolutions , 2011, 1101.3702.

[4]  R. Anno,et al.  Orthogonally spherical objects and spherical fibrations , 2010, 1011.0707.

[5]  H. Thomas,et al.  Braid groups and Kleinian singularities , 2009, 0910.2521.

[6]  Y. Oh,et al.  Lagrangian Intersection Floer Theory , 2009 .

[7]  Paul Seidel,et al.  Fukaya Categories and Picard-Lefschetz Theory , 2008 .

[8]  E. Zaslow,et al.  Constructible sheaves and the Fukaya category , 2006, math/0604379.

[9]  B. Toën,et al.  Moduli of objects in dg-categories , 2005, math/0503269.

[10]  Goncalo Tabuada Algèbre homologique Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories , 2004, math/0407338.

[11]  A. Beilinson,et al.  Tilting exercises , 2003, math/0301098.

[12]  Y. Soibelman,et al.  Mirror symmetry and deformation quantization , 2002, hep-th/0202128.

[13]  N. Chriss,et al.  Representation theory and complex geometry , 1997 .

[14]  R. Macpherson,et al.  Perverse sheaves and quivers , 1996 .

[15]  M. Kapranov,et al.  ENHANCED TRIANGULATED CATEGORIES , 1991 .

[16]  P. Schapira,et al.  A vanishing theorem for Holonomic modules with positive characteristic varieties , 1990 .

[17]  Mikhail Kapranov,et al.  REPRESENTABLE FUNCTORS, SERRE FUNCTORS, AND MUTATIONS , 1990 .

[18]  Masaki Kashiwara,et al.  Sheaves on Manifolds , 1990 .

[19]  A. Beilinson How to glue perverse sheaves , 1987 .

[20]  A. Galligo,et al.  ${\mathcal {D}}$-modules et faisceaux pervers dont le support singulier est un croisement normal , 1985 .

[21]  Sergei Gelfand,et al.  Verma modules and Schubert cells: A dictionary , 1982 .

[22]  P. Schapira Conditions de positivité dans une variété symplectique complexe . Applications à l'étude des microfonctions , 1981 .

[23]  H. Komatsu Hyperfunctions and Pseudo-Differential Equations , 1973 .

[24]  R. Harvey The Theory of Hyperfunctions on Totally Real Subsets of a Complex Manifold with Applications to Extension Problems , 1969 .