Clique Minors in Cartesian Products of Graphs

A "clique minor" in a graph G can be thought of as a set of connected subgraphs in G that are pairwise disjoint and pairwise adjacent. The "Hadwiger number" h(G) is the maximum cardinality of a clique minor in G. This paper studies clique minors in the Cartesian product G*H. Our main result is a rough structural characterisation theorem for Cartesian products with bounded Hadwiger number. It implies that if the product of two sufficiently large graphs has bounded Hadwiger number then it is one of the following graphs: - a planar grid with a vortex of bounded width in the outerface, - a cylindrical grid with a vortex of bounded width in each of the two `big' faces, or - a toroidal grid. Motivation for studying the Hadwiger number of a graph includes Hadwiger's Conjecture, which states that the chromatic number chi(G) = chi(G) >= chi(H) then Hadwiger's Conjecture holds for G*H. On the other hand, we prove that Hadwiger's Conjecture holds for all Cartesian products if and only if it holds for all G * K_2. We then show that h(G * K_2) is tied to the treewidth of G. We also develop connections with pseudoachromatic colourings and connected dominating sets that imply near-tight bounds on the Hadwiger number of grid graphs (Cartesian products of paths) and Hamming graphs (Cartesian products of cliques).

[1]  Gary Chartrand,et al.  Graphical theorems of the Nordhaus-Gaddum class , 1971 .

[2]  Gary MacGillivray,et al.  The achromatic number of the union of paths , 2001, Discret. Math..

[3]  Zevi Miller,et al.  Contractions of graphs: A theorem of ore and an extremal problem , 1978, Discret. Math..

[4]  E. Sampathkumar,et al.  Partition graphs and coloring numbers of a graph , 1976, Discret. Math..

[5]  W. Edwin Clark,et al.  The domination numbers of the 5 × n and 6 × n grid graphs , 1993, J. Graph Theory.

[6]  Renu C. Laskar,et al.  Some coloring numbers for complete r-partite graphs , 1976, J. Comb. Theory, Ser. B.

[7]  V. Yegnanarayanan,et al.  The Pseudoachromatic Number of a Graph , 2000 .

[8]  A. Kostochka The minimum Hadwiger number for graphs with a given mean degree of vertices , 1982 .

[9]  Gert Sabidussi,et al.  Graphs with Given Group and Given Graph-Theoretical Properties , 1957, Canadian Journal of Mathematics.

[10]  R. L. Brooks On colouring the nodes of a network , 1941, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  Constant Time Computation of Minimum Dominating Sets , 1994 .

[12]  Pavol Hell,et al.  Graph with given achromatic number , 1976, Discret. Math..

[13]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[14]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[15]  Detlef Seese,et al.  Grids and their minors , 1989, J. Comb. Theory, Ser. B.

[16]  Douglas M. Van Wieren Critical cyclic patterns related to the domination number of the torus , 2007, Discret. Math..

[17]  Paul D. Seymour,et al.  Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.

[18]  David E. R. Sitton,et al.  MAXIMUM MATCHINGS IN COMPLETE MULTIPARTITE GRAPHS , 1996 .

[19]  L. Sunil Chandran,et al.  Hadwiger Number and the Cartesian Product Operation on Graphs , 2005 .

[20]  Bohdan Zelinka Hadwiger numbers of finite graphs , 1976 .

[21]  Ram P. Gupta Bounds on the chromatic and achromatic numbers of complimentary graphs , 1968 .

[22]  G. Dirac A Property of 4-Chromatic Graphs and some Remarks on Critical Graphs , 1952 .

[23]  Simon Spacapan,et al.  Connectivity of Cartesian products of graphs , 2008, Appl. Math. Lett..

[24]  Douglas F. Rall,et al.  Improving some bounds for dominating Cartesian products , 2003, Discuss. Math. Graph Theory.

[25]  Fred B. Schneider,et al.  A Theory of Graphs , 1993 .

[26]  Sylvain Gravier,et al.  Bounds on domination number of complete grid graphs , 2001, Ars Comb..

[27]  Sylvain Gravier,et al.  Total domination number of grid graphs , 2002, Discret. Appl. Math..

[28]  Carsten Thomassen,et al.  Highly Connected Sets and the Excluded Grid Theorem , 1999, J. Comb. Theory, Ser. B.

[29]  Andrei Kotlov Minors and Strong Products , 2001, Eur. J. Comb..

[30]  V. Yegnanarayanan,et al.  On the existence of graphs with prescribed coloring parameters , 2000, Discret. Math..

[31]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[32]  V. Yegnanarayanan,et al.  Graph colourings and partitions , 2001, Theor. Comput. Sci..

[33]  Alexandr V. Kostochka,et al.  Hadwiger Number and the Cartesian Product of Graphs , 2008, Graphs Comb..

[34]  V. N. Bhave On the pseudoachromatic number of a graph , 1979 .

[35]  Naveen Sivadasan,et al.  On the Hadwiger number of hypercubes and its generalizations , 2005, Electron. Notes Discret. Math..

[36]  David R. Wood,et al.  On the Maximum Number of Cliques in a Graph , 2006, Graphs Comb..

[37]  Naveen Sivadasan,et al.  On the Hadwiger's conjecture for graph products , 2007, Discret. Math..

[38]  Frank Harary,et al.  Graph Theory , 2016 .

[39]  Douglas F. Rall,et al.  On dominating the Cartesian product of a graph and K2 , 2004, Discuss. Math. Graph Theory.

[40]  Paul D. Seymour,et al.  Graph Minors. XVI. Excluding a non-planar graph , 2003, J. Comb. Theory, Ser. B.

[41]  M. Behzad,et al.  On Topological Invariants of the Product of Graphs , 1969, Canadian Mathematical Bulletin.

[42]  Ken-ichi Kawarabayashi,et al.  Some Recent Progress and Applications in Graph Minor Theory , 2007, Graphs Comb..

[43]  Nathan Linial,et al.  Minors in lifts of graphs , 2006, Random Struct. Algorithms.

[44]  Jun-Ming Xu,et al.  Connectivity of Cartesian product graphs , 2006, Discret. Math..

[45]  V. Yegnanarayanan,et al.  Extremal graphs in some coloring problems , 1998, Discret. Math..

[46]  Michael Stiebitz On Hadwiger's number - a problem of the Nordhaus-Gaddum type , 1992, Discret. Math..

[47]  Michael S. Jacobson,et al.  On the domination of the products of graphs II: Trees , 1986, J. Graph Theory.

[48]  Dennis Geller,et al.  Further results on the achromatic number , 1974 .

[49]  Ramy S. Shaheen Bounds for the 2-domination number of toroidal grid graphs , 2009, Int. J. Comput. Math..

[50]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[51]  John Pearson,et al.  The Hadwiger Number for the Product of Two Cycles , 1996, DMTCS.

[52]  Felix Goldberg On the Colin de Verdière numbers of Cartesian graph products , 2009 .

[53]  Venkatesh Raman,et al.  On the pseudoachromatic number of join of graphs , 2003, Int. J. Comput. Math..

[54]  Gayathri Mahalingam,et al.  Connected domination in graphs , 2005 .

[55]  Wilfried Imrich,et al.  Topics in Graph Theory: Graphs and Their Cartesian Product , 2008 .

[56]  W. Imrich,et al.  Product Graphs: Structure and Recognition , 2000 .

[57]  Jaroslav Ivančo Some results on the Hadwiger numbers of graphs , 1988 .

[58]  Hans L. Bodlaender,et al.  Only few graphs have bounded treewidth , 1992 .

[59]  Keith J. Edwards Achromatic number versus pseudoachromatic number: a counterexample to a conjecture of Hedetniemi , 2000, Discret. Math..

[60]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.