Mass and energy conservative high order diagonally implicit Runge-Kutta schemes for nonlinear Schrödinger equation in one and two dimensions

We present and analyze a series of conservative diagonally implicit Runge--Kutta schemes for the nonlinear Schrodiner equation. With the application of the newly developed invariant energy quadratization approach, these schemes possess not only high accuracy , high order convergence (up to fifth order) and efficiency due to diagonally implicity but also mass and energy conservative properties. Both theoretical analysis and numerical experiments of one- and two-dimensional dynamics are carried out to verify the invariant conservative properties, convergence orders and longtime simulation stability.

[1]  R. Glassey On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations , 1977 .

[2]  J. M. Franco,et al.  Fourth-Order Symmetric DIRK Methods for Periodic Stiff Problems , 2003, Numerical Algorithms.

[3]  Yuezheng Gong,et al.  A linearly energy-preserving Fourier pseudospectral method based on energy quadratization for the sine-Gordon equation , 2019, 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST).

[4]  Songhe Song,et al.  Symplectic and multi-symplectic wavelet collocation methods for two-dimensional Schrödinger equations , 2011 .

[5]  J. M. Sanz-Serna,et al.  Order conditions for canonical Runge-Kutta schemes , 1991 .

[6]  Qiang Du,et al.  Dynamics of Rotating Bose-Einstein Condensates and its Efficient and Accurate Numerical Computation , 2006, SIAM J. Appl. Math..

[7]  Xu Qian,et al.  A semi-explicit multi-symplectic splitting scheme for a 3-coupled nonlinear Schrödinger equation , 2014, Comput. Phys. Commun..

[8]  Yushun Wang,et al.  Multi-symplectic Fourier pseudospectral method for the Kawahara equation , 2014 .

[9]  Lili Ju,et al.  Linear and unconditionally energy stable schemes for the binary fluid–surfactant phase field model , 2017, 1701.07446.

[10]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[11]  Tingchun Wang,et al.  Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions , 2013, J. Comput. Phys..

[12]  Bo Wang,et al.  Solitary wave solutions for nonlinear fractional Schrödinger equation in Gaussian nonlocal media , 2019, Appl. Math. Lett..

[13]  Xiaofeng Yang,et al.  Numerical approximations for a three-component Cahn–Hilliard phase-field model based on the invariant energy quadratization method , 2017 .

[14]  Songhe Song,et al.  Erratum to Symplectic and multi-symplectic wavelet collocation methods for two-dimensional Schrödinger equations [Applied Numerical Mathematics 61 (3) (2011) 308-321] , 2011 .

[15]  Lili Ju,et al.  Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model , 2017 .

[16]  Catherine Sulem,et al.  The nonlinear Schrödinger equation , 2012 .

[17]  Raducanu Razvan,et al.  MATHEMATICAL MODELS and METHODS in APPLIED SCIENCES , 2012 .

[18]  Qi Wang,et al.  A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation , 2017, J. Comput. Phys..

[19]  M. Qin,et al.  MULTI-SYMPLECTIC FOURIER PSEUDOSPECTRAL METHOD FOR THE NONLINEAR SCHR ¨ ODINGER EQUATION , 2001 .

[20]  Zacharoula Kalogiratou,et al.  Diagonally Implicit Symplectic Runge-Kutta Methods with Special Properties , 2015 .

[21]  Chi-Wang Shu,et al.  Local discontinuous Galerkin methods for nonlinear Schrödinger equations , 2005 .

[22]  Akira Hasegawa,et al.  Optical solitons in fibers , 1993, International Commission for Optics.

[23]  Yushun Wang,et al.  Arbitrarily high-order energy-preserving schemes for the Camassa-Holm equation , 2019, ArXiv.

[24]  Mehdi Dehghan,et al.  Numerical solution to the unsteady two‐dimensional Schrödinger equation using meshless local boundary integral equation method , 2008 .

[25]  M. Qin,et al.  Symplectic Geometric Algorithms for Hamiltonian Systems , 2010 .

[26]  V. G. Makhankov,et al.  Dynamics of classical solitons (in non-integrable systems) , 1978 .

[27]  Songhe Song,et al.  Multi-symplectic wavelet collocation method for the nonlinear Schrödinger equation and the Camassa-Holm equation , 2011, Comput. Phys. Commun..

[28]  Liquan Mei,et al.  A linear, symmetric and energy-conservative scheme for the space-fractional Klein-Gordon-Schrödinger equations , 2019, Appl. Math. Lett..

[29]  G. Akrivis,et al.  On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation , 1991 .