Identify the fractional order and diffusion coefficient in a fractional diffusion wave equation

Abstract This paper is devoted to identifying the fractional order and diffusion coefficient in a time fractional diffusion wave equation from boundary observation data in one dimensional case. The uniqueness of recovering the fractional order and diffusion coefficient simultaneously has been proved by the Laplace transform and Gel’fand-Levitan theory. In addition, we apply the iterative regularizing ensemble Kalman method to provide a numerical implementation of the considered inverse problem. Four numerical examples are carried out to demonstrate the performance of the proposed method.

[1]  Masahiro Yamamoto,et al.  Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems , 2011 .

[2]  Brian Berkowitz,et al.  Anomalous transport in laboratory‐scale, heterogeneous porous media , 2000 .

[3]  Andrew M. Stuart,et al.  Uncertainty Quantification and Weak Approximation of an Elliptic Inverse Problem , 2011, SIAM J. Numer. Anal..

[4]  Liang Yan,et al.  Adaptive multi-fidelity polynomial chaos approach to Bayesian inference in inverse problems , 2018, J. Comput. Phys..

[5]  Andrew Stuart,et al.  Convergence analysis of ensemble Kalman inversion: the linear, noisy case , 2017, 1702.07894.

[6]  Liang Yan,et al.  Convergence analysis of surrogate-based methods for Bayesian inverse problems , 2017 .

[7]  Marco A. Iglesias,et al.  Iterative regularization for ensemble data assimilation in reservoir models , 2014, Computational Geosciences.

[8]  Geir Evensen,et al.  Analysis of iterative ensemble smoothers for solving inverse problems , 2018, Computational Geosciences.

[9]  Xijun Yu,et al.  Error analysis of direct discontinuous Galerkin method for two-dimensional fractional diffusion-wave equation , 2019, Appl. Math. Comput..

[10]  Yuan-Xiang Zhang,et al.  Bayesian approach to a nonlinear inverse problem for a time-space fractional diffusion equation , 2018, Inverse Problems.

[11]  N. Young An Introduction to Hilbert Space , 1988 .

[12]  B. M. Levitan,et al.  Introduction to spectral theory : selfadjoint ordinary differential operators , 1975 .

[13]  Daisuke Fujiwara,et al.  Concrete Characterization of the Domains of Fractional Powers of Some Elliptic Differential Operators of the Second Order , 1967 .

[14]  Marco A. Iglesias,et al.  A regularizing iterative ensemble Kalman method for PDE-constrained inverse problems , 2015, 1505.03876.

[15]  Marco A. Iglesias,et al.  Parameterizations for ensemble Kalman inversion , 2017, 1709.01781.

[16]  Marco A. Iglesias,et al.  Filter Based Methods For Statistical Linear Inverse Problems , 2015, 1512.01955.

[17]  Tao Zhou,et al.  AN ADAPTIVE MULTIFIDELITY PC-BASED ENSEMBLE KALMAN INVERSION FOR INVERSE PROBLEMS , 2018, International Journal for Uncertainty Quantification.

[18]  M. Dentz,et al.  Modeling non‐Fickian transport in geological formations as a continuous time random walk , 2006 .

[19]  Haibing Wang,et al.  On the well-posedness of determination of two coefficients in a fractional integrodifferential equation , 2014 .

[20]  Limei Li,et al.  Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation , 2013, J. Comput. Phys..

[21]  Masahiro Yamamoto,et al.  On existence and uniqueness of solutions for semilinear fractional wave equations , 2015, 1510.03478.

[22]  Gerhard Freiling,et al.  Inverse Sturm-Liouville problems and their applications , 2001 .

[23]  I. Podlubny Fractional differential equations , 1998 .

[24]  M. Slodicka,et al.  Recognition of a time-dependent source in a time-fractional wave equation , 2017 .

[25]  Ting Wei,et al.  Inversion of the Initial Value for a Time-Fractional Diffusion-Wave Equation by Boundary Data , 2020, Comput. Methods Appl. Math..

[26]  T. Wei,et al.  Reconstruction of a time-dependent source term in a time-fractional diffusion-wave equation , 2018, Inverse Problems in Science and Engineering.

[27]  Yun Zhang,et al.  The backward problem for a time-fractional diffusion-wave equation in a bounded domain , 2018, Comput. Math. Appl..

[28]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[29]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[30]  Masahiro Yamamoto,et al.  Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation , 2013 .

[31]  A. Stuart,et al.  Ensemble Kalman methods for inverse problems , 2012, 1209.2736.

[32]  A. Stuart,et al.  Besov priors for Bayesian inverse problems , 2011, 1105.0889.

[33]  Fawang Liu,et al.  Finite difference/finite element method for a novel 2D multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on convex domains , 2019, Commun. Nonlinear Sci. Numer. Simul..

[34]  Ling Guo,et al.  Stochastic Collocation Algorithms Using l1-Minimization for Bayesian Solution of Inverse Problems , 2015, SIAM J. Sci. Comput..

[35]  Zhi‐zhong Sun,et al.  A compact difference scheme for the fractional diffusion-wave equation , 2010 .

[36]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[37]  Andrew M. Stuart,et al.  Approximation of Bayesian Inverse Problems for PDEs , 2009, SIAM J. Numer. Anal..