An adaptive domain decomposition procedure for Boltzmann and Euler equations

In this paper we present a domain decomposition approach for the coupling of Boltzmann and Euler equations. Particle methods are used for both equations. This leads to a simple implementation of the coupling procedure and to natural interface conditions between the two domains. Adaptive time and space discretizations and a direct coupling procedure lead to considerable gains in CPU time compared to a solution of the full Boltzmann equation. Several test cases involving a large range of Knudsen numbers are numerically investigated.

[1]  Moulay D. Tidriri,et al.  Numerical coupling of nonconservative or kinetic models with the conservative compressible Navier-Stokes equations , 1991 .

[2]  Axel Klar Domain Decomposition for Kinetic Problems with Nonequilibrium States , 1994 .

[3]  Reinhard Illner,et al.  A convergence proof for Nanbu's simulation method for the full Boltzmann equation , 1989 .

[4]  S. Tiwari,et al.  Coupling of the Boltzmann and Euler Equations with Automatic Domain Decomposition , 1998 .

[5]  H. Grad On the kinetic theory of rarefied gases , 1949 .

[6]  J. Meixner Zur Thermodynamik der irreversiblen Prozesse , 1943 .

[7]  Domain decomposition in particle methods for the Boltzmann and Euler equations , 1998 .

[8]  S. M. Deshpande,et al.  A second-order accurate kinetic-theory-based method for inviscid compressible flows , 1986 .

[9]  S. Rjasanow,et al.  Sobolev Norm as a criterion of local thermal equilibrium , 1997 .

[10]  Helmut Neunzert,et al.  Domain Decomposition: Linking Kinetic and Aerodynamic Descriptions , 1993 .

[11]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[12]  M. Junk,et al.  Particle Methods for Evolution Equations , 1996 .

[13]  Graham V. Candler,et al.  Predicting failure of the continuum fluid equations in transitional hypersonic flows , 1994 .

[14]  Patrick Le Tallec,et al.  Coupling Boltzmann and Euler equations without overlapping , 1992 .

[15]  H. Neunzert,et al.  Particle Methods for the Boltzmann Equation , 1995, Acta Numerica.

[16]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[17]  Axel Klar,et al.  Asymptotic-Induced Domain Decomposition Methods for Kinetic and Drift Diffusion Semiconductor Equations , 1998, SIAM J. Sci. Comput..

[18]  R. Caflisch The fluid dynamic limit of the nonlinear boltzmann equation , 1980 .

[19]  B. Perthame Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions , 1992 .

[20]  H. Kreuzer Nonequilibrium thermodynamics and its statistical foundations , 1981 .

[21]  Roddam Narasimha,et al.  Structure of a plane shock layer , 1962 .

[22]  H. Babovsky,et al.  A convergence proof for Nanbu's Boltzmann simulation scheme , 1989 .