Global well-posedness of smooth solutions to the Landau-Lifshitz-Slonczewski equation

In this paper, we mainly consider the global solvability of smooth solutions for the Cauchy problem of the three-dimensional Landau-Lifshitz-Slonczewski equation in the Morrey space. We derive the covariant complex Ginzburg-Landau equation by using moving frames to address the nonlinear parts. Applying the semigroup estimates and energy methods, we extend local classical solutions to global solutions and prove the boundedness of $\|\nabla\boldsymbol{m}\|_{L^{\infty}(\mathbb{R}^{3})}$, where $\boldsymbol{m}$ is the magnetic intensity. Moreover, we obtain a global weak solution by using an approximation result and improve the regularity of the obtained solution by the regularity theory. Finally, we establish the existence and uniqueness of global smooth solutions under some conditions on $\nabla\boldsymbol{m}_{0}$ and the density of the spin-polarized current.

[1]  Changyou Wang,et al.  Global well-posedness of the Landau–Lifshitz–Gilbert equation for initial data in Morrey spaces , 2015 .

[2]  Mariya Ptashnyk,et al.  Landau-Lifshitz-Slonczewski Equations: Global Weak and Classical Solutions , 2013, SIAM J. Math. Anal..

[3]  E. Tsymbal,et al.  Handbook of spin transport and magnetism , 2011 .

[4]  C. Melcher Global Solvability of the Cauchy Problem for the Landau-Lifshitz-Gilbert Equation in Higher Dimensions , 2011, 1105.1597.

[5]  F. Lin,et al.  Partial regularity for weak heat flows into spheres , 2010 .

[6]  C. Kenig,et al.  The Cauchy problem for Schr\"{o}dinger flows into K\"{a}hler manifolds , 2009, 0911.3141.

[7]  D. Ralph,et al.  Spin transfer torques , 2007, 0711.4608.

[8]  Carlos E. Kenig,et al.  Global existence and uniqueness of Schrödinger maps in dimensions d... 4 , 2007 .

[9]  D. Ralph,et al.  Measurement of the spin-transfer-torque vector in magnetic tunnel junctions , 2007, 0705.4207.

[10]  N. Smith,et al.  Thermal and spin-torque noise in CPP (TMR and/or GMR) read sensors , 2006, IEEE Transactions on Magnetics.

[11]  Gigliola Staffilani,et al.  The Cauchy problem for Schrodinger flows into Kahler manifolds , 2005, math/0511701.

[12]  Christof Melcher,et al.  Existence of Partially Regular Solutions for Landau–Lifshitz Equations in ℝ3 , 2005 .

[13]  S. Zhang,et al.  Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. , 2004, Physical review letters.

[14]  Shijin Ding,et al.  Initial-boundary value problem for higher dimensional landau–lifshitz systems , 2004 .

[15]  丁时进,et al.  Partial Regularity for Higher Dimensional Landau—Lifshitz Systems , 2003 .

[16]  D. Ralph,et al.  Thermally activated magnetic reversal induced by a spin-polarized current. , 2002, Physical review letters.

[17]  Roger Moser,et al.  Partial regularity for the Landau-Lifshitz equation in small dimensions , 2002 .

[18]  Gilles Carbou,et al.  Regular solutions for Landau-Lifschitz equation in a bounded domain , 2001, Differential and Integral Equations.

[19]  P. E. Zilberman,et al.  Current-driven switching of magnetic layers , 2000, cond-mat/0005064.

[20]  Ding Shi-jin,et al.  Partial regularity for two dimensional Landau-Lifshitz equations , 1998 .

[21]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[22]  Boling Guo,et al.  The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic maps , 1993 .

[23]  Frédéric Hélein,et al.  Regularity of weakly harmonic maps from a surface into a manifold with symmetries , 1991 .

[24]  Lawrence C. Evans,et al.  Partial regularity for stationary harmonic maps into spheres , 1991 .

[25]  Michael Struwe,et al.  Existence and partial regularity results for the heat flow for harmonic maps , 1989 .

[26]  L. Berger,et al.  Exchange forces between domain wall and electric current in permalloy films of variable thickness , 1988 .

[27]  Michael Struwe,et al.  On the evolution of harmonic mappings of Riemannian surfaces , 1985 .

[28]  Paulo P. Freitas,et al.  Observation of s‐d exchange force between domain walls and electric current in very thin Permalloy films , 1985 .

[29]  L. Berger,et al.  Domain drag effect in the presence of variable magnetic field or variable transport current , 1979 .

[30]  M. Giaquinta,et al.  Partial regularity for the solutions to nonlinear parabolic systems , 1973 .

[31]  S. Yuasa,et al.  Quantitative measurement of voltage dependence of spin-transfer torque in MgO-based magnetic tunnel junctions , 2008 .

[32]  Supriyo Bandyopadhyay,et al.  Introduction to spintronics , 2008 .

[33]  Shijin Ding,et al.  Finite Time singularity of the Landau-Lifshitz-Gillbert Equation , 2007 .

[34]  J. C. Sloncxewski,et al.  Current-driven excitation of magnetic multilayers , 2003 .

[35]  W. Ding,et al.  Local Schrödinger flow into Kähler manifolds , 2001 .

[36]  B. Guo,et al.  Smooth solution for one-dimensional inhomogeneous Heisenberg chain equations , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[37]  Mikhail Feldman,et al.  Partial regularity for harmonic maps of evolution into spheres , 1994 .

[38]  B. Guo,et al.  EXISTENCE AND UNIQUENESS OF SMOOTH SOLUTION FOR SYSTEM OF FERROMAGNETIC CHAIN , 1991 .

[39]  Slonczewski Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. , 1989, Physical review. B, Condensed matter.

[40]  Michael Struwe,et al.  On the evolution of harmonic maps in higher dimensions , 1988 .

[41]  Karen Uhlenbeck,et al.  Boundary regularity and the Dirichlet problem for harmonic maps , 1983 .

[42]  Lev Davidovich Landau,et al.  ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .