A Posteriori Error Estimates and an Adaptive Finite Element Method for the Allen–Cahn Equation and the Mean Curvature Flow
暂无分享,去创建一个
[1] P. Fife. Dynamics of Internal Layers and Diffusive Interfaces , 1988 .
[2] P. Souganidis,et al. Phase Transitions and Generalized Motion by Mean Curvature , 1992 .
[3] Lawrence F. Shampine,et al. The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..
[4] Rüdiger Verfürth. A posteriori error estimates for nonlinear problems. Lr(0, T; Lrho(Omega))-error estimates for finite element discretizations of parabolic equations , 1998, Math. Comput..
[5] J. Langer. Models of Pattern Formation in First-Order Phase Transitions , 1986 .
[6] James F. Blowey,et al. Curvature Dependent Phase Boundary Motion and Parabolic Double Obstacle Problems , 1993 .
[7] Maurizio Paolini,et al. Quasi-optimal error estimates for the mean curvature flow with a forcing term , 1995, Differential and Integral Equations.
[8] Xinfu Chen,et al. Generation and propagation of interfaces for reaction-diffusion equations , 1992 .
[9] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[10] Yun-Gang Chen,et al. Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .
[11] Ricardo H. Nochetto,et al. Optimal interface error estimates for the mean curvature flow , 1994 .
[12] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[13] Xinfu Chen,et al. Spectrum for the allen-chan, chan-hillard, and phase-field equations for generic interfaces , 1994 .
[14] Michelle Schatzman,et al. Geometrical evolution of developed interfaces , 1995, Emerging applications in free boundary problems.
[15] Ricardo H. Nochetto,et al. A posteriori error control for the Allen–Cahn problem: circumventing Gronwall's inequality , 2004 .
[16] G. Caginalp. An analysis of a phase field model of a free boundary , 1986 .
[17] Andreas Prohl,et al. Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows , 2003, Numerische Mathematik.
[18] L. Evans,et al. Motion of level sets by mean curvature. II , 1992 .
[19] Miloslav Feistauer,et al. On one approach to a posteriori error estimates for evolution problems solved by the method of lines , 2001, Numerische Mathematik.
[20] Joseph E. Flaherty,et al. Second-order finite element approximations and a posteriori error estimation for two-dimensional parabolic systems , 1988 .
[21] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems IV: nonlinear problems , 1995 .
[22] G. McFadden. Phase-Field Models of Solidification , 2002 .
[23] Andreas Prohl,et al. Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits , 2003, Math. Comput..
[24] J. Cahn,et al. A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .
[25] Bernardo Cockburn,et al. Continuous dependence and error estimation for viscosity methods , 2003, Acta Numerica.
[26] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .