A Posteriori Error Estimates and an Adaptive Finite Element Method for the Allen–Cahn Equation and the Mean Curvature Flow

This paper develops an a posteriori error estimate of residual type for finite element approximations of the Allen–Cahn equation ut − Δu+ ε−2f(u)=0. It is shown that the error depends on ε−1 only in some low polynomial order, instead of exponential order. Based on the proposed a posteriori error estimator, we construct an adaptive algorithm for computing the Allen–Cahn equation and its sharp interface limit, the mean curvature flow. Numerical experiments are also presented to show the robustness and effectiveness of the proposed error estimator and the adaptive algorithm.

[1]  P. Fife Dynamics of Internal Layers and Diffusive Interfaces , 1988 .

[2]  P. Souganidis,et al.  Phase Transitions and Generalized Motion by Mean Curvature , 1992 .

[3]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[4]  Rüdiger Verfürth A posteriori error estimates for nonlinear problems. Lr(0, T; Lrho(Omega))-error estimates for finite element discretizations of parabolic equations , 1998, Math. Comput..

[5]  J. Langer Models of Pattern Formation in First-Order Phase Transitions , 1986 .

[6]  James F. Blowey,et al.  Curvature Dependent Phase Boundary Motion and Parabolic Double Obstacle Problems , 1993 .

[7]  Maurizio Paolini,et al.  Quasi-optimal error estimates for the mean curvature flow with a forcing term , 1995, Differential and Integral Equations.

[8]  Xinfu Chen,et al.  Generation and propagation of interfaces for reaction-diffusion equations , 1992 .

[9]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[10]  Yun-Gang Chen,et al.  Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .

[11]  Ricardo H. Nochetto,et al.  Optimal interface error estimates for the mean curvature flow , 1994 .

[12]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[13]  Xinfu Chen,et al.  Spectrum for the allen-chan, chan-hillard, and phase-field equations for generic interfaces , 1994 .

[14]  Michelle Schatzman,et al.  Geometrical evolution of developed interfaces , 1995, Emerging applications in free boundary problems.

[15]  Ricardo H. Nochetto,et al.  A posteriori error control for the Allen–Cahn problem: circumventing Gronwall's inequality , 2004 .

[16]  G. Caginalp An analysis of a phase field model of a free boundary , 1986 .

[17]  Andreas Prohl,et al.  Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows , 2003, Numerische Mathematik.

[18]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[19]  Miloslav Feistauer,et al.  On one approach to a posteriori error estimates for evolution problems solved by the method of lines , 2001, Numerische Mathematik.

[20]  Joseph E. Flaherty,et al.  Second-order finite element approximations and a posteriori error estimation for two-dimensional parabolic systems , 1988 .

[21]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems IV: nonlinear problems , 1995 .

[22]  G. McFadden Phase-Field Models of Solidification , 2002 .

[23]  Andreas Prohl,et al.  Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits , 2003, Math. Comput..

[24]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[25]  Bernardo Cockburn,et al.  Continuous dependence and error estimation for viscosity methods , 2003, Acta Numerica.

[26]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .