Scaling and decoherence in the nonequilibrium Kondo model.

We study the Kondo effect in quantum dots in an out-of-equilibrium state due to an applied dc-voltage bias. Using the method of infinitesimal unitary transformations ("flow equations"), we develop a perturbative scaling picture that naturally contains both equilibrium coherence and nonequilibrium decoherence effects. This framework allows one to study the competition between Kondo effect and current-induced decoherence, and it establishes a large regime dominated by single-channel Kondo physics for asymmetrically coupled quantum dots.

[1]  A. Rosch,et al.  Nonequilibrium Transport through a Kondo Dot: Decoherence Effects. , 2004, cond-mat/0401180.

[2]  P. Wölfle,et al.  Nonequilibrium transport through a Kondo dot in a magnetic field: perturbation theory and poor man's scaling. , 2002, Physical review letters.

[3]  M. Krawiec,et al.  Nonequilibrium Kondo effect in asymmetrically coupled quantum dots , 2002, cond-mat/0208560.

[4]  F. Wegner,et al.  Pomeranchuk and other instabilities in the t-t' Hubbard model at the Van Hove filling , 2002, cond-mat/0205213.

[5]  C. Hooley,et al.  Perturbative expansion of the magnetization in the out-of-equilibrium Kondo model , 2002, cond-mat/0202425.

[6]  F. Wegner,et al.  Stability Analysis of the Hubbard Model , 2001, cond-mat/0106604.

[7]  Eran Lebanon,et al.  Measuring the Out-of-Equilibrium Splitting of the Kondo Resonance , 2001, cond-mat/0105488.

[8]  C. Hooley,et al.  Is the quantum dot at large bias a weak-coupling problem? , 2000, Physical review letters.

[9]  W. Hofstetter,et al.  Flow equation analysis of the anisotropic Kondo model , 2000, cond-mat/0008242.

[10]  S. Kehrein Flow equation approach to the sine-Gordon model , 2000, cond-mat/0006403.

[11]  Tarucha,et al.  The kondo effect in the unitary limit , 2000, Science.

[12]  L. Glazman,et al.  The Kondo Effect in a Quantum Dot out of Equilibrium , 2000, cond-mat/0003353.

[13]  S. Kehrein Flow Equation Solution for the Weak- to Strong-Coupling Crossover in the Sine-Gordon Model , 1999, cond-mat/9908048.

[14]  L. Glazman,et al.  Suppression of the kondo effect in a quantum dot by external irradiation , 1999, cond-mat/9903436.

[15]  K. Klitzing,et al.  A quantum dot in the limit of strong coupling to reservoirs , 1998 .

[16]  A. Schiller,et al.  Toulouse limit for the nonequilibrium Kondo impurity: Currents, noise spectra, and magnetic properties , 1998 .

[17]  Kouwenhoven,et al.  A tunable kondo effect in quantum dots , 1998, Science.

[18]  M. Kastner,et al.  Kondo effect in a single-electron transistor , 1997, Nature.

[19]  S. Kehrein,et al.  Low temperature equilibrium correlation functions in dissipative quantum systems , 1996, cond-mat/9607160.

[20]  Schoen,et al.  Resonant tunneling through ultrasmall quantum dots: Zero-bias anomalies, magnetic-field dependence, and boson-assisted transport. , 1996, Physical review. B, Condensed matter.

[21]  Hershfield,et al.  Exactly solvable nonequilibrium Kondo problem. , 1995, Physical review. B, Condensed matter.

[22]  F. Wegner FLOW EQUATIONS FOR HAMILTONIANS , 1998 .

[23]  K. Wilson,et al.  Perturbative renormalization group for Hamiltonians. , 1994, Physical review. D, Particles and fields.

[24]  Wilson,et al.  Renormalization of Hamiltonians. , 1993, Physical review. D, Particles and fields.

[25]  Alex C. Hewson,et al.  The Kondo Problem to Heavy Fermions , 1993 .

[26]  A. Hewson,et al.  The Kondo Problem to Heavy Fermions: Addendum , 1993 .

[27]  T. Ng,et al.  On-site Coulomb repulsion and resonant tunneling. , 1988, Physical review letters.

[28]  P. Anderson A poor man's derivation of scaling laws for the Kondo problem , 1970 .

[29]  J. C. Phillips,et al.  Microscopic Theory of Tunneling Anomalies , 1967 .