The rate and evenness of the substitutions on hyaluronan grafted by dodecanoic acid influenced by the mixed-solvent composition.

[1]  J. Vohlídal,et al.  Oleate-modified hyaluronan: Controlling the number and distribution of side chains by varying the reaction conditions. , 2021, Carbohydrate polymers.

[2]  M. Scotti,et al.  Protein modeling , 2021, Physical Sciences Reviews.

[3]  F. Ondreáš,et al.  Formulation of hyaluronan grafted with dodecanoic acid as a potential ophthalmic treatment. , 2020, Carbohydrate polymers.

[4]  S. W. Kim,et al.  Recent advances in polymeric drug delivery systems , 2020, Biomaterials Research.

[5]  M. Ingr,et al.  Effect of solvent and ions on the structure and dynamics of a hyaluronan molecule. , 2020, Carbohydrate polymers.

[6]  P. Gruber,et al.  Hyaluronic acid vinyl esters: A toolbox toward controlling mechanical properties of hydrogels for 3D microfabrication , 2020 .

[7]  V. Velebný,et al.  Biodegradable free-standing films from lauroyl derivatives of hyaluronan. , 2019, Carbohydrate polymers.

[8]  P. Smolka,et al.  Electrospinning of Hyaluronan Using Polymer Coelectrospinning and Intermediate Solvent , 2019, Polymers.

[9]  T. Webster,et al.  Dual targeting curcumin loaded alendronate-hyaluronan- octadecanoic acid micelles for improving osteosarcoma therapy , 2019, International journal of nanomedicine.

[10]  G. Patey,et al.  Structural behavior of aqueous t-butanol solutions from large-scale molecular dynamics simulations. , 2019, The Journal of chemical physics.

[11]  Sunhwan Jo,et al.  CHARMM-GUI Glycan Modeler for modeling and simulation of carbohydrates and glycoconjugates , 2019, Glycobiology.

[12]  D. Ret,et al.  Exact determination of the degree of substitution of high molar mass hyaluronan by controlling the conformation in solution. , 2019, Carbohydrate polymers.

[13]  G. Pitarresi,et al.  Imatinib-Loaded Micelles of Hyaluronic Acid Derivatives for Potential Treatment of Neovascular Ocular Diseases. , 2018, Molecular pharmaceutics.

[14]  M. Tammi,et al.  Single-Molecule Unbinding Forces between the Polysaccharide Hyaluronan and Its Binding Proteins , 2018, Biophysical journal.

[15]  A. Mohs,et al.  The role of hydrophobic modification on hyaluronic acid dynamics and self-assembly. , 2018, Carbohydrate polymers.

[16]  Hualiang Huang,et al.  Application of hyaluronic acid as carriers in drug delivery , 2018, Drug delivery.

[17]  V. Velebný,et al.  Synthesis of graft copolymers based on hyaluronan and poly(3-hydroxyalkanoates). , 2017, Carbohydrate polymers.

[18]  M. Ingr,et al.  Hyaluronan random coils in electrolyte solutions-a molecular dynamics study. , 2017, Carbohydrate polymers.

[19]  V. Velebný,et al.  Preparation and extensive characterization of hyaluronan with narrow molecular weight distribution. , 2017, Carbohydrate polymers.

[20]  V. Velebný,et al.  Hyaluronan polymeric micelles for topical drug delivery. , 2017, Carbohydrate polymers.

[21]  A. Kotzianová,et al.  Evaluating the degree of substitution of water-insoluble acyl derivatives of hyaluronan using Raman spectroscopy: method development and comparison with gas chromatography and 1H NMR , 2017 .

[22]  Alexander D. MacKerell,et al.  CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field , 2015, Journal of chemical theory and computation.

[23]  Preeti Raghavan,et al.  Viscoelastic Properties of Hyaluronan in Physiological Conditions , 2015, F1000Research.

[24]  V. Velebný,et al.  Novel synthetic method for the preparation of amphiphilic hyaluronan by means of aliphatic aromatic anhydrides. , 2014, Carbohydrate polymers.

[25]  V. Velebný,et al.  Structural and conformational differences of acylated hyaluronan modified in protic and aprotic solvent system , 2012 .

[26]  Alexander D. MacKerell,et al.  CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling. , 2011, Journal of chemical theory and computation.

[27]  Jason A Burdick,et al.  Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. , 2010, Biomaterials.

[28]  Jamie M. Messman,et al.  Polypeptide grafted hyaluronan: synthesis and characterization. , 2010, Biomacromolecules.

[29]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[30]  V. Velebný,et al.  Solution Properties of Hyaluronic Acid and Comparison of SEC-MALS-VIS Data with Off-Line Capillary Viscometry , 2010 .

[31]  A. Almond,et al.  Hyaluronan: the absence of amide-carboxylate hydrogen bonds and the chain conformation in aqueous solution are incompatible with stable secondary and tertiary structure models. , 2006, The Biochemical journal.

[32]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[33]  L. Šoltés,et al.  Evaluation of radius of gyration and intrinsic viscosity molar mass dependence and stiffness of hyaluronan. , 2003, Biomacromolecules.

[34]  John E. Scott,et al.  Biological properties of hyaluronan in aqueous solution are controlled and sequestered by reversible tertiary structures, defined by NMR spectroscopy. , 2002, Biomacromolecules.

[35]  T. Hardingham,et al.  The analysis of intermolecular interactions in concentrated hyaluronan solutions suggest no evidence for chain-chain association. , 2000, The Biochemical journal.

[36]  J. Scott,et al.  Hyaluronan forms specific stable tertiary structures in aqueous solution: a 13C NMR study. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[37]  A. Teŕamoto,et al.  Chain-stiffness and excluded-volume effects in solutions of sodium hyaluronate at high ionic strength , 1995 .

[38]  M. Rinaudo,et al.  Influence of the ionic strength on the dimensions of sodium hyaluronate , 1992 .

[39]  M. Cowman,et al.  The intrinsic viscosity of hyaluronan , 2002 .