The CRIT framework for identifying cross patterns in systems biology and application to chemogenomics

Biological data is often tabular but finding statistically valid connections between entities in a sequence of tables can be problematic - for example, connecting particular entities in a drug property table to gene properties in a second table, using a third table associating genes with drugs. Here we present an approach (CRIT) to find connections such as these and show how it can be applied in a variety of genomic contexts including chemogenomics data.

[1]  Xiang Guo,et al.  Histone acetylation and transcriptional regulation in the genome of Saccharomyces cerevisiae , 2006, Bioinform..

[2]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[3]  M. Gerstein,et al.  Global analysis of protein phosphorylation in yeast , 2005, Nature.

[4]  Stuart L. Schreiber,et al.  Large-scale chemical dissection of mitochondrial function , 2008, Nature Biotechnology.

[5]  Kara Dolinski,et al.  Expanded protein information at SGD: new pages and proteome browser , 2006, Nucleic Acids Res..

[6]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[7]  Mark Gerstein,et al.  The tYNA platform for comparative interactomics: a web tool for managing, comparing and mining multiple networks , 2006, Bioinform..

[8]  D. Botstein,et al.  Genomic expression programs in the response of yeast cells to environmental changes. , 2000, Molecular biology of the cell.

[9]  A. Goffeau,et al.  Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants , 2000, FEBS letters.

[10]  Philippe Besse,et al.  Sparse canonical methods for biological data integration: application to a cross-platform study , 2009, BMC Bioinformatics.

[11]  Trey Ideker,et al.  Hot spots for modulating toxicity identified by genomic phenotyping and localization mapping. , 2004, Molecular cell.

[12]  Yudong D. He,et al.  Gene expression profiling predicts clinical outcome of breast cancer , 2002, Nature.

[13]  Mark Gerstein,et al.  Integrated Assessment of Genomic Correlates of Protein Evolutionary Rate , 2009, PLoS Comput. Biol..

[14]  D. Eisenberg,et al.  Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[15]  J. C. Hinshaw,et al.  Discovering Modes of Action for Therapeutic Compounds Using a Genome-Wide Screen of Yeast Heterozygotes , 2004, Cell.

[16]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[17]  K. Kuchler,et al.  Inventory and function of yeast ABC proteins: about sex, stress, pleiotropic drug and heavy metal resistance. , 1999, Biochimica et biophysica acta.

[18]  Michael Hampsey,et al.  A Review of Phenotypes in Saccharomyces cerevisiae , 1997, Yeast.

[19]  Stefan Hohmann,et al.  Yeast Stress Responses , 1997, Topics in Current Genetics.

[20]  Ira Herskowitz,et al.  Yeast go the whole HOG for the hyperosmotic response. , 2002, Trends in genetics : TIG.

[21]  S. Kitajima,et al.  Effects of four oxidants, menadione, 1-chloro-2,4-dinitrobenzene, hydrogen peroxide and cumene hydroperoxide, on fission yeast Schizosaccharmoyces pombe. , 2005, Journal of biochemistry.

[22]  Olga G. Troyanskaya,et al.  The impact of incomplete knowledge on evaluation: an experimental benchmark for protein function prediction , 2009, Bioinform..

[23]  Aedín C Culhane,et al.  A multivariate analysis approach to the integration of proteomic and gene expression data , 2007, Proteomics.

[24]  Daylight Theory Manual , 2011 .

[25]  Robert P. St.Onge,et al.  The Chemical Genomic Portrait of Yeast: Uncovering a Phenotype for All Genes , 2008, Science.

[26]  Clifford A. Meyer,et al.  Genome-wide analysis of estrogen receptor binding sites , 2006, Nature Genetics.

[27]  Grant W. Brown,et al.  Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways , 2004, Nature Biotechnology.

[28]  Nicola J. Rinaldi,et al.  Transcriptional regulatory code of a eukaryotic genome , 2004, Nature.

[29]  Michael I. Jordan,et al.  A latent variable model for chemogenomic profiling , 2005, Bioinform..

[30]  Jan O. Korbel,et al.  Positive selection at the protein network periphery: Evaluation in terms of structural constraints and cellular context , 2007, Proceedings of the National Academy of Sciences.

[31]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[32]  Igor V. Tetko,et al.  Virtual Computational Chemistry Laboratory – Design and Description , 2005, J. Comput. Aided Mol. Des..