Are water simulation models consistent with steady-state and ultrafast vibrational spectroscopy experiments?

[1]  A. Wallqvist,et al.  Molecular Models of Water: Derivation and Description , 2007 .

[2]  J. Loparo,et al.  Multidimensional infrared spectroscopy of water. I. Vibrational dynamics in two-dimensional IR line shapes. , 2006, The Journal of chemical physics.

[3]  J. Loparo,et al.  Multidimensional infrared spectroscopy of water. II. Hydrogen bond switching dynamics. , 2006, The Journal of chemical physics.

[4]  H. Bakker,et al.  Orientational dynamics of isotopically diluted H2O and D2O. , 2006, The Journal of chemical physics.

[5]  J. Loparo,et al.  Characterization of spectral diffusion from two-dimensional line shapes. , 2006, The Journal of chemical physics.

[6]  J. Skinner,et al.  Vibrational spectral diffusion of azide in water. , 2006, The journal of physical chemistry. B.

[7]  J. Skinner,et al.  Approaches for the calculation of vibrational frequencies in liquids: comparison to benchmarks for azide/water clusters. , 2006, The Journal of chemical physics.

[8]  M. Fayer,et al.  Testing the core/shell model of nanoconfined water in reverse micelles using linear and nonlinear IR spectroscopy. , 2006, The journal of physical chemistry. A.

[9]  Sotiris S Xantheas,et al.  The flexible, polarizable, thole-type interaction potential for water (TTM2-F) revisited. , 2006, The journal of physical chemistry. A.

[10]  Phillip L Geissler,et al.  Unified description of temperature-dependent hydrogen-bond rearrangements in liquid water. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[11]  J. Eaves,et al.  Electric field fluctuations drive vibrational dephasing in water. , 2005, The journal of physical chemistry. A.

[12]  H. Bakker,et al.  On the orientational relaxation of HDO in liquid water. , 2005, The Journal of chemical physics.

[13]  J. Loparo,et al.  Hydrogen bonds in liquid water are broken only fleetingly. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Edward D Harder,et al.  Polarizable molecules in the vibrational spectroscopy of water. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  J. Skinner,et al.  Pronounced non-Condon effects in the ultrafast infrared spectroscopy of water. , 2005, The Journal of chemical physics.

[16]  S. Corcelli,et al.  Infrared and Raman line shapes of dilute HOD in liquid H2O and D2O from 10 to 90 °C , 2005 .

[17]  Peter J Rossky,et al.  Static and dynamic quantum effects in molecular liquids: a linearized path integral description of water. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. Fayer,et al.  Orientational dynamics of water confined on a nanometer length scale in reverse micelles. , 2005, The Journal of chemical physics.

[19]  J. Loparo,et al.  Local hydrogen bonding dynamics and collective reorganization in water: ultrafast infrared spectroscopy of HOD/D(2)O. , 2005, The Journal of chemical physics.

[20]  S. Mukamel,et al.  Collective solvent coordinates for the infrared spectrum of HOD in D2O based on an ab initio electrostatic map. , 2005, The journal of physical chemistry. A.

[21]  J. Skinner,et al.  Dynamics of water probed with vibrational echo correlation spectroscopy. , 2004, The Journal of chemical physics.

[22]  J. Skinner,et al.  Ultrafast vibrational spectroscopy of water and aqueous N-methylacetamide: Comparison of different electronic structure/molecular dynamics approaches. , 2004, The Journal of chemical physics.

[23]  J. Skinner,et al.  Spectral diffusion in a fluctuating charge model of water. , 2004, The Journal of chemical physics.

[24]  Richard J. Saykally,et al.  Energetics of Hydrogen Bond Network Rearrangements in Liquid Water , 2004, Science.

[25]  P. Wernet,et al.  The Structure of the First Coordination Shell in Liquid Water , 2004, Science.

[26]  J. Skinner,et al.  Combined electronic structure/molecular dynamics approach for ultrafast infrared spectroscopy of dilute HOD in liquid H2O and D2O. , 2004, The Journal of chemical physics.

[27]  S. Rick A reoptimization of the five-site water potential (TIP5P) for use with Ewald sums. , 2004, The Journal of chemical physics.

[28]  J. Skinner,et al.  Water dynamics: dependence on local structure probed with vibrational echo correlation spectroscopy , 2004 .

[29]  J. Hynes,et al.  Hydrogen Bond Dynamics in Water and Ultrafast Infrared Spectroscopy: A Theoretical Study , 2004 .

[30]  J. Skinner,et al.  Water Dynamics: Vibrational Echo Correlation Spectroscopy and Comparison to Molecular Dynamics Simulations , 2004 .

[31]  J. Loparo,et al.  Ultrafast Hydrogen-Bond Dynamics in the Infrared Spectroscopy of Water , 2003, Science.

[32]  M. Cho,et al.  Molecular dynamics simulation study of N-methylacetamide in water. I. Amide I mode frequency fluctuation , 2003 .

[33]  M. Cho,et al.  Molecular dynamics simulation study of N-methylacetamide in water. II. Two-dimensional infrared pump–probe spectra , 2003 .

[34]  A. Piryatinski,et al.  Vibrational spectroscopy of HOD in liquid D2O. V. Infrared three-pulse photon echoes , 2003 .

[35]  C. Lawrence,et al.  Ultrafast infrared spectroscopy probes hydrogen-bonding dynamics in liquid water , 2003 .

[36]  D. Wiersma,et al.  Hydrogen-bond dynamics in water explored by heterodyne-detected photon echo , 2003 .

[37]  Rossend Rey,et al.  Hydrogen Bond Dynamics in Water and Ultrafast Infrared Spectroscopy , 2002 .

[38]  Bertrand Guillot,et al.  A reappraisal of what we have learnt during three decades of computer simulations on water , 2002 .

[39]  J. Skinner,et al.  Vibrational spectroscopy of HOD in liquid D2O. II. Infrared line shapes and vibrational Stokes shift , 2002 .

[40]  A. Panagiotopoulos,et al.  Gibbs ensemble Monte Carlo simulations of coexistence properties of a polarizable potential model of water , 2002 .

[41]  Sotiris S. Xantheas,et al.  Development of transferable interaction models for water. IV. A flexible, all-atom polarizable potential (TTM2-F) based on geometry dependent charges derived from an ab initio monomer dipole moment surface , 2002 .

[42]  T. Elsaesser,et al.  A Photon Echo Peak Shift Study of Liquid Water , 2002 .

[43]  B. Berne,et al.  Quantum effects in liquid water: Path-integral simulations of a flexible and polarizable ab initio model , 2001 .

[44]  J. Skinner,et al.  Rotational motion in liquid water is anisotropic: a nuclear magnetic resonance and molecular dynamics simulation study. , 2001, Journal of the American Chemical Society.

[45]  T. Elsaesser,et al.  Ultrafast Vibrational Dephasing of Liquid Water , 2001 .

[46]  Michael D. Fayer,et al.  Ultrafast Infrared And Raman Spectroscopy , 2001 .

[47]  Greg L. Hura,et al.  What can x-ray scattering tell us about the radial distribution functions of water? , 2000 .

[48]  Alan K. Soper,et al.  The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa , 2000 .

[49]  P. Ball Life's Matrix: A Biography of Water , 2000 .

[50]  Michael W. Mahoney,et al.  A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions , 2000 .

[51]  D. Dlott,et al.  Vibrational Energy Relaxation and Spectral Diffusion in Water and Deuterated Water , 2000 .

[52]  P. Moore,et al.  A combined instantaneous normal mode and time correlation function description of the infrared vibrational spectrum of ambient water , 1999 .

[53]  S. Woutersen,et al.  Hydrogen Bond in Liquid Water as a Brownian Oscillator , 1999 .

[54]  R. Saykally,et al.  Spectroscopic determination of the water pair potential. , 1999, Science.

[55]  G. M. Gale,et al.  FEMTOSECOND DYNAMICS OF HYDROGEN BONDS IN LIQUID WATER : A REAL TIME STUDY , 1999 .

[56]  S. Woutersen,et al.  Anomalous Temperature Dependence of Vibrational Lifetimes in Water and Ice , 1998 .

[57]  A. Laubereau,et al.  DYNAMICS OF LOCAL SUBSTRUCTURES IN WATER OBSERVED BY ULTRAFAST INFRARED HOLE BURNING , 1998 .

[58]  M. Parrinello,et al.  Ab initio infrared spectrum of liquid water , 1997 .

[59]  L. Dang,et al.  MOLECULAR DYNAMICS STUDY OF WATER CLUSTERS, LIQUID, AND LIQUID-VAPOR INTERFACE OF WATER WITH MANY-BODY POTENTIALS , 1997 .

[60]  H. Kawashima,et al.  Theory of nonlinear optical experiments with harmonic oscillators , 1995 .

[61]  S. Mukamel Principles of Nonlinear Optical Spectroscopy , 1995 .

[62]  B. Berne,et al.  Dynamical fluctuating charge force fields: Application to liquid water , 1994, chem-ph/9406002.

[63]  David E. Smith,et al.  Computer simulations of NaCl association in polarizable water , 1994 .

[64]  K. Hermansson,et al.  THE OH VIBRATIONAL-SPECTRUM OF LIQUID WATER FROM COMBINED ABINITIO AND MONTE-CARLO CALCULATIONS , 1991 .

[65]  Michael L. Klein,et al.  Effective pair potentials and the properties of water , 1989 .

[66]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[67]  Alan K. Soper,et al.  A new determination of the structure of water at 25°C , 1986 .

[68]  Martin Neumann,et al.  Dielectric relaxation in water. Computer simulations with the TIP4P potential , 1986 .

[69]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[70]  A. Roche,et al.  Organic Chemistry: , 1982, Nature.

[71]  Udo Kaatze,et al.  The Dielectric Properties of Water at Microwave Frequencies , 1981 .

[72]  William F. Murphy,et al.  The Rayleigh depolarization ratio and rotational Raman spectrum of water vapor and the polarizability components for the water molecule , 1977 .

[73]  D. J. Wilbur,et al.  Molecular motions in compressed liquid water , 1976 .

[74]  J. Scherer,et al.  Raman spectra and structure of water from -10 to 90.deg. , 1974 .

[75]  H. Bernstein,et al.  Raman spectra and an assignment of the vibrational stretching region of water , 1972 .

[76]  H. A. Levy,et al.  Liquid Water: Molecular Correlation Functions from X‐Ray Diffraction , 1971 .

[77]  A. D. Buckingham,et al.  A theory of the dielectric polarization of polar substances , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[78]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[79]  J. Skinner,et al.  Vibrational spectroscopy of HOD in liquid D2O. III. Spectral diffusion, and hydrogen-bonding and rotational dynamics , 2003 .

[80]  R. A. Kuharski,et al.  A quantum mechanical study of structure in liquid H2O and D2O , 1985 .

[81]  Faraday Discuss , 1985 .

[82]  Kazimierz Krynicki,et al.  Pressure and temperature dependence of self-diffusion in water , 1978 .

[83]  Felix Franks,et al.  Water:A Comprehensive Treatise , 1972 .

[84]  Wallace Wurth,et al.  Fundamentals of Biochemistry: , 1936, Nature.