Structural, magnetic, electrical and dielectric properties of Pr0.8Na0.2MnO3 manganite

The orthorhombic Pr0.8Na0.2MnO3 ceramic was prepared in polycrystalline form by a Pechini sol–gel method and its structural, magnetic, electrical and dielectric properties were investigated experimentally. A structural study confirms that the sample is single phase. Magnetic measurements show that the sample is a charge ordered manganite. The sample undergoes two successive magnetic phase transitions with the variation of temperature: a charge ordering transition occurred at TCO = 212 K followed by a paramagnetic (PM) to ferromagnetic (FM) transition around TC = 115 K. From an electrical point of view, a saturation region was marked in the conductivity as a function of temperature σ(T) curves at a specific temperature. The dc-conductivity (σdc) reaches a maximum value at 240 K. The obtained results are in good agreement with the temperature dependence of the average normalized change (ANC). We found that the conduction mechanism was governed by small polaron hopping (SPH) in the high temperature region and by variable range hopping (VRH) in the low temperature region. Complex impedance analysis indicates the presence of a non-Debye relaxation phenomenon in the system. Also, the compound was modeled by an electrical equivalent circuit. Then, the contribution of the grain boundary in the transport properties was confirmed.

[1]  E. Hlil,et al.  Tuning magnetic and magnetocaloric properties around room temperature via chromium substitution in La0.65Nd0.05Ba0.3MnO3 system , 2019, Journal of Magnetism and Magnetic Materials.

[2]  M. Oumezzine,et al.  Impact of synthesis routes on normal and inverse magnetocaloric effects and critical behaviour in the charge-ordered Pr0.5Sr0.5MnO3 manganite , 2019, The European Physical Journal Plus.

[3]  M. A. Ghani,et al.  Structural and electrical transport properties of (La0.7-Y )Ca0.3MnO3 manganites , 2019, Results in Physics.

[4]  K. Khirouni,et al.  Structural, electrical, dielectric properties and conduction mechanism of sol-gel prepared Pr0.75Bi0.05Sr0.1Ba0.1Mn0.98Ti0.02O3 compound , 2019, Materials Research Bulletin.

[5]  M. Koubaa,et al.  Role of lanthanum vacancy on the structural, magnetic and magnetocaloric properties in the lacunar perovskite manganites La0.8−x□xNa0.2MnO3 (0 ≤ x ≤ 0.15) , 2017 .

[6]  A. Dinia,et al.  Structural characterization and magnetic field dependence of the magnetocaloric properties in Pr0.8Na0.05K0.15MnO3 ceramic , 2017 .

[7]  R. M’nassri,et al.  Effect of trivalent rare earth doping on magnetic and magnetocaloric properties of Pr0.5(Ce,Eu,Y)0.1Sr0.4MnO3 manganites , 2016, Applied Physics A.

[8]  R. M’nassri,et al.  Effect of trivalent rare earth doping on magnetic and magnetocaloric properties of Pr0.5(Ce,Eu,Y)0.1Sr0.4MnO3 manganites , 2016 .

[9]  K. Khirouni,et al.  Physical properties of 20% Cr-doped Pr0.7Ca0.3MnO3 perovskite , 2015 .

[10]  S. W. Ng,et al.  Effect of Sintering on Structural and Transport Properties on Nanosized Pr0.85Na0.15MnO3 , 2015 .

[11]  E. Dhahri,et al.  Structural and electrical properties of Zn1-xNixFe2O4 ferrite , 2015 .

[12]  E. Dhahri,et al.  Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5-xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). , 2015, Dalton transactions.

[13]  M. Koubaa,et al.  Structural, magnetic and magnetocaloric properties of La0.8Ca0.2−xNaxMnO3 manganites (0≤x≤0.2) , 2015 .

[14]  R. M’nassri,et al.  Impact of sintering temperature on the magnetic and magnetocaloric properties in Pr0.5Eu0.1Sr0.4MnO3 manganites , 2015 .

[15]  R. M’nassri,et al.  Evolution of Magnetocaloric Behavior in Oxygen Deficient La2/3Ba1/3MnO3−δ Manganites , 2014 .

[16]  R. Fittipaldi,et al.  Optical spectra of LaMn0.5Ga0.5O3: A contribution to the assignment of the electronic transitions in manganites , 2014 .

[17]  M. Idrees,et al.  Change of conduction mechanism in the impedance of grain boundaries , 2013 .

[18]  M. Lethiecq,et al.  Dielectric properties of hexagonal perovskite ceramics prepared by different routes , 2012 .

[19]  S. Atalay,et al.  Electrical Transport and Magnetoresistance of La 0.67 Ca 0.33 MnO 3 : Ag x (x = 0, 0.1, 0.2, 0.3, 0.4) Composites , 2012 .

[20]  D. Pociecha,et al.  Room temperature magnetocaloric and magneto-transport properties of monovalent doped Pr0.6Sr0.35Na0.05MnO3 manganite , 2012 .

[21]  H. Srikanth,et al.  Structure, magnetic, and magnetocaloric properties of amorphous and crystalline La0.4Ca0.6MnO3+δ nanoparticles , 2012 .

[22]  Weihua Tang,et al.  Magnetic and electrical transport properties of nanostructured La0.67Ca0.33MnO3 networks , 2008 .

[23]  M. Nadeem,et al.  Increase of grain boundary resistance with time by impedance spectroscopy in La0.50Ca0.50MnO3+δ at 77 K , 2008 .

[24]  Liuwan Zhang,et al.  Polaron relaxation related to localized charge carriers in Pr1−xCaxMnO3 , 2007 .

[25]  S. Atalay,et al.  Effect of B-doping on the structural, magnetotransport and magnetocaloric properties of La0.67Ca0.33MnO3 compounds , 2007 .

[26]  T. K. Dey,et al.  Structural and magnetocaloric properties of La1−yNayMnO3 compounds prepared by microwave processing , 2007 .

[27]  Y. Sun,et al.  Magnetization steps in the phase separated manganite La0.275Pr0.35Ca0.375MnO3 , 2006 .

[28]  P. V. Reddy,et al.  Effect of sintering temperature on electrical transport properties of La0.67Ca0.33MnO3 , 2005 .

[29]  K. Hariharan,et al.  Structure and ionic transport studies of sodium borophosphate glassy system , 2005 .

[30]  D. Pradhan,et al.  Complex impedance studies on a layered perovskite ceramic oxide—NaNdTiO4 , 2005 .

[31]  Chang Q. Sun,et al.  Magnetic and electronic properties of charge ordered Nd0.8Na0.2MnO3 , 2004 .

[32]  A. Ahmed Bi-doping effects on the transport properties in La0.7−xBixSr0.3MnOy , 2004 .

[33]  D. Singh,et al.  Preparation and study of silver added La0.67Ca0.33MnO3 film , 2004 .

[34]  India.,et al.  Double metal–insulator transitions and MR in La0.67Ca0.33Mn1−xRuxO3 (x⩽0.10): a qualitative understanding in light of possible magnetic phase separation , 2003, cond-mat/0308030.

[35]  Hao Wang,et al.  Synthesis of La0.5A0.5MnO3 (A = Sr, Ba) by a hydrothermal method at low temperature , 2003 .

[36]  M. Hervieu,et al.  Structure and magnetism in the Pr1−xNaxMnO3 perovskites (0 ⩽ x ⩽ 0.2) , 2002 .

[37]  M. Audier,et al.  Synthesis and characterisation of La1−xMnO3±δ nanopowders prepared by acrylamide polymerisation , 2002 .

[38]  Yongquan Guo,et al.  Interplay of structure and transport properties of sodium-doped lanthanum manganite , 2001 .

[39]  T. Roisnel,et al.  WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis , 2001 .

[40]  M. Hervieu,et al.  Magnetic phase diagram of the charge ordered manganite Pr0.8Na0.2MnO3 , 2001 .

[41]  H. Qin,et al.  Giant magnetoimpedance effect in La0.7Ca0.3MnO3 under low magnetic fields , 2001 .

[42]  V. Vassiliev,et al.  Synthesis of La1−xPbxMnO3 colossal magnetoresistive ceramics from co-precipitated oxalate precursors , 2001 .

[43]  M. Croft,et al.  Charge ordering and Magnetoresistance of Ca1-xCexMnO3 , 2001 .

[44]  F. Millange,et al.  Charge, orbital, and magnetic order in Nd 0.5 Ca 0.5 MnO 3 , 2000, cond-mat/0005206.

[45]  J. Yakhmi,et al.  Magnetic and electrical properties of La0.67Ca0.33MnO3 as influenced by substitution of Cr , 2000 .

[46]  K. Bärner,et al.  Crystal structure and magnetoresistance of Na-doped LaMnO3 , 1999 .

[47]  H. Upadhyaya,et al.  Experimental studies on polyethylene oxide-NaClO4 based composite polymer electrolytes dispersed with Na2SiO3 , 1998 .

[48]  J. Suchanicz The low-frequency dielectric relaxation Na0.5Bi0.5TiO3 ceramics , 1998 .

[49]  S. Aruna,et al.  Combustion synthesis and properties of strontium substituted lanthanum manganites La1–xSrxMnO3 (0≤x≤0.3) , 1997 .

[50]  Vogt,et al.  Structural changes and related effects due to charge ordering in Nd0.5Ca0.5MnO3. , 1996, Physical review. B, Condensed matter.

[51]  Balakrishnan,et al.  Influence of charge and magnetic ordering on the insulator-metal transition in Pr1-xCaxMnO3. , 1995, Physical review. B, Condensed matter.

[52]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[53]  Juan Rodriguez-Carvaj,et al.  Recent advances in magnetic structure determination neutron powder diffraction , 1993 .

[54]  N. Mott,et al.  Electronic Processes In Non-Crystalline Materials , 1940 .