The bright end of the exo-Zodi luminosity function: disc evolution and implications for exo-Earth detectability

We present the first characterisation of the 12µm warm dust (‘exo-Zodi’) luminosity function around Sun-like stars, focusing on the dustiest systems that can be identified by the WISE mission. We use the sample of main-sequence stars observed byHipparcos within 150 pc as an unbiased sample, and report the detection of six new warm dust candidates. The ages of five of these new sources are unknown, meaning that they may be sites of terrestrial planet formation or rare analogues of other old warm dust systems. We show that the dustiest old (>Gyr) systems such as BD+20 307 are 1 in 10 000 occurrences. Bright warm dust is much more common around young (<120 Myr) systems, with a ∼1 per cent occurrence rate. We show that a two component in situ model, where all stars have initially massive warm discs and in which warm debris is also generated at some random time along the stars’ main-sequence lifetime, perhaps due to a collision, can explain the observations. However, if all stars have only initially massive warm discs, then these would not be visible at Gyr ages, and random collisions on the main sequence are too infrequent to explain the high disc occurrence rate for young stars. That is, neither of the components can explain the observations on their own. Despite these conclusions, we cannot rule out an alternative dynamical model in which comets are scattered in from outer regions because the distribution of systems with the appropriate dynamics is unknown. Our in situ model predicts that the fraction of stars with exo-Zodi bright enough to cause problems for future exo-Earth imaging attempts is at least roughly 10 per cent, and is higher for populations of stars younger than a few Gyr. This prediction of roughly 10 per cent also applies to old stars because bright systems like BD+20 307 imply a population of fainter systems that were once bright, but are now decaying through fainter levels. Our prediction should be strongly tested by the Large Binocular Telescope Interferometer, which will provide valuable constraints and input for more detailed evolution models. A detection fraction lower than our prediction could indicate that the hot dust in systems like BD+20 307 has a cometary origin due to the quirks of the planetary dynamics. Population models of comet delivery need to be developed to help distinguish between different possible origins of warm dust.

[1]  I. Song,et al.  THE AGE OF THE HD 15407 SYSTEM AND THE EPOCH OF FINAL CATASTROPHIC MASS ACCRETION ONTO TERRESTRIAL PLANETS AROUND SUN-LIKE STARS , 2010, 1005.2451.

[2]  M. Ireland,et al.  Multidimensional Bayesian membership analysis of the Sco OB2 moving group , 2011, 1106.2857.

[3]  R. Smith,et al.  The nature of mid-infrared excesses from hot dust around Sun-like stars , 2008, 0804.4580.

[4]  K. Y. L. Su,et al.  Steady State Evolution of Debris Disks around A Stars , 2007 .

[5]  J. Kasting,et al.  Habitable zones around main sequence stars. , 1993, Icarus.

[6]  B. Zuckerman,et al.  THE ABSENCE OF COLD DUST AND THE MINERALOGY AND ORIGIN OF THE WARM DUST ENCIRCLING BD +20 307 , 2010, 1010.6218.

[7]  Ryan C. Terrien,et al.  HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES , 2013, 1301.6674.

[8]  Spitzer 24 μm Observations of Open Cluster IC 2391 and Debris Disk Evolution of FGK Stars , 2006, astro-ph/0609141.

[9]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[10]  J. Valenti,et al.  A FAR-ULTRAVIOLET ATLAS OF LOW-RESOLUTION HUBBLE SPACE TELESCOPE SPECTRA OF T TAURI STARS , 2012, 1205.4789.

[11]  N. Kains,et al.  Steady-state evolution of debris discs around solar-type stars , 2011, 1102.4341.

[12]  R. Neuhauser,et al.  A catalogue of young runaway Hipparcos stars within 3 kpc from the Sun , 2010, 1007.4883.

[13]  K. Stapelfeldt,et al.  COMMON WARM DUST TEMPERATURES AROUND MAIN-SEQUENCE STARS , 2011 .

[14]  Z. Balog,et al.  THE COLLISIONAL EVOLUTION OF DEBRIS DISKS , 2012, 1211.1415.

[15]  B. Zuckerman,et al.  Infrared observations of the remarkable main-sequence star HD 98800 , 1993 .

[16]  R. Smith,et al.  Resolving the terrestrial planet forming regions of HD 113766 and HD 172555 with MIDI , 2012, 1202.5487.

[17]  Submillimeter Images of a Dusty Kuiper Belt around η Corvi , 2004, astro-ph/0411061.

[18]  Gautam Vasisht,et al.  Keck Interferometer Nuller Data Reduction and On-Sky Performance , 2009 .

[19]  K. Y. L. Su,et al.  EXPLORATIONS BEYOND THE SNOW LINE: SPITZER/IRS SPECTRA OF DEBRIS DISKS AROUND SOLAR-TYPE STARS , 2009, 0909.0058.

[20]  D. Padgett,et al.  WISE DETECTIONS OF DUST IN THE HABITABLE ZONES OF PLANET-BEARING STARS , 2012 .

[21]  M. Perryman,et al.  The Three-Dimensional Universe with Gaia , 2005 .

[22]  Hiroshi Murakami,et al.  ENSTATITE-RICH WARM DEBRIS DUST AROUND HD165014 , 2010, 1004.0560.

[23]  J. Bernard-Salas,et al.  CASSIS: THE CORNELL ATLAS OF SPITZER/INFRARED SPECTROGRAPH SOURCES , 2011, 1108.3507.

[24]  D. Mawet,et al.  NEW CONSTRAINTS ON COMPANIONS AND DUST WITHIN A FEW AU OF VEGA , 2011 .

[25]  H. Walker,et al.  COOL CIRCUMSTELLAR MATTER AROUND NEARBY MAIN-SEQUENCE STARS , 1988 .

[26]  H. Kataza,et al.  SILICA-RICH BRIGHT DEBRIS DISK AROUND HD 15407A , 2012, 1203.2534.

[27]  M. Wyatt,et al.  Evolution of Debris Disks , 2008 .

[28]  Harold F. Levison,et al.  COMETARY ORIGIN OF THE ZODIACAL CLOUD AND CARBONACEOUS MICROMETEORITES. IMPLICATIONS FOR HOT DEBRIS DISKS , 2009, 0909.4322.

[29]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[30]  M. Skrutskie,et al.  A sensitive 10-micron search for emission arising from circumstellar dust associated with solar-type pre-main-sequence stars , 1990 .

[31]  Harold F. Levison,et al.  From the Kuiper Belt to Jupiter-Family Comets: The Spatial Distribution of Ecliptic Comets☆ , 1997 .

[32]  E. L. Wright,et al.  THE SPITZER–WISE SURVEY OF THE ECLIPTIC POLES , 2011 .

[33]  G. Rieke,et al.  DEBRIS DISKS AROUND SOLAR-TYPE STARS: OBSERVATIONS OF THE PLEIADES WITH THE SPITZER SPACE TELESCOPE , 2010, 1003.0351.

[34]  G. Rieke,et al.  MODELING COLLISIONAL CASCADES IN DEBRIS DISKS: STEEP DUST-SIZE DISTRIBUTIONS , 2011, 1111.0296.

[35]  Philip M. Hinz,et al.  OBSERVATIONS OF MAIN-SEQUENCE STARS AND LIMITS ON EXOZODICAL DUST WITH NULLING INTERFEROMETRY , 2009 .

[36]  T. Jarrett,et al.  Young Stars and Protostellar Cores near NGC 2023 and the Horsehead Nebula , 2009, 0909.2614.

[37]  N. Phillips,et al.  Coplanar circumbinary debris discs , 2012, 1208.1759.

[38]  M. Bessell Standard Photometric Systems , 2005 .

[39]  H. Aumann,et al.  Search for Vega-like nearby stars with 12 micron excess , 1991 .

[40]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[41]  L. Hartmann,et al.  HD 98800: A 10 Myr Old Transition Disk , 2007, 0705.0380.

[42]  G. Fazio,et al.  The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.

[43]  B. Zuckerman,et al.  Extreme collisions between planetesimals as the origin of warm dust around a Sun-like star , 2005, Nature.

[44]  R. Cutri,et al.  Discovery of New Candidate Vega-type Systems from IRAS and the 2 Micron All-Sky Survey , 2000 .

[45]  Aki Roberge,et al.  The Exozodiacal Dust Problem for Direct Observations of Exo-Earths , 2012, 1204.0025.

[46]  M. Wyatt,et al.  Collisional evolution of irregular satellite swarms: detectable dust around Solar system and extrasolar planets , 2010, 1011.4858.

[47]  K. Sadakane,et al.  TWELVE ADDITIONAL "VEGA-LIKE" STARS. , 1986 .

[48]  C. Clarke,et al.  The dispersal of circumstellar discs: the role of the ultraviolet switch , 2001 .

[49]  W. Corradi,et al.  Investigation of 131 Herbig Ae/Be Candidate Stars , 2003 .

[50]  J. R. Houck,et al.  Origin of the Solar System dust bands discovered by IRAS , 1984, Nature.

[51]  B. Zuckerman,et al.  Planetary Systems around Close Binary Stars: The Case of the Very Dusty, Sun-like, Spectroscopic Binary BD+20 307 , 2008, 0808.1765.

[52]  R. O. Gray,et al.  Debris Disks in Main-Sequence Binary Systems , 2006, astro-ph/0612029.

[53]  H. Bischof,et al.  The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory , 2010, 1005.1487.

[54]  B. Mcintosh,et al.  Solid Particles in the Solar System , 1980 .

[55]  M. C. Wyatt,et al.  Debris discs and comet populations around Sun-like stars: the Solar system in context , 2010, 1001.5177.

[56]  et al,et al.  New Debris Disks around Nearby Main-Sequence Stars: Impact on the Direct Detection of Planets , 2006, astro-ph/0611682.

[57]  G. Rieke,et al.  Herschel imaging of 61 Vir: implications for the prevalence of debris in low-mass planetary systems , 2012, 1206.2370.

[58]  J. Augereau,et al.  Scattering of small bodies by planets: a potential origin for exozodiacal dust? , 2012, 1209.6033.

[59]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[60]  Heidelberg,et al.  New Herbig Ae/Be stars confirmed via high-resolution optical spectroscopy , , 2010, 1004.3386.

[61]  G. Rieke,et al.  The Exceptionally Large Debris Disk around γ Ophiuchi , 2008, 0804.2924.

[62]  M. Blaylock,et al.  A Spitzer Study of Dusty Disks in the Scorpius-Centaurus OB Association , 2005, astro-ph/0501103.

[63]  J. S. Dohnanyi Collisional model of asteroids and their debris , 1969 .

[64]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[65]  K. Enya,et al.  AKARI/IRC 18 μm survey of warm debris disks , 2012, 1211.6365.

[66]  S. Kenyon,et al.  Detecting the Dusty Debris of Terrestrial Planet Formation , 2004, astro-ph/0401343.

[67]  Christine H. Chen,et al.  A SPITZER MIPS STUDY OF 2.5–2.0 M☉ STARS IN SCORPIUS-CENTAURUS , 2012, 1207.3415.

[68]  S. T. Ridgway,et al.  Circumstellar material in the Vega inner system revealed by CHARA/FLUOR , 2006 .

[69]  Abundant Circumstellar Silica Dust and SiO Gas Created by a Giant Hypervelocity Collision in the ~12 Myr HD172555 System , 2009, 0906.2536.

[70]  C. Chen,et al.  Circumstellar Dust Created by Terrestrial Planet Formation in HD 113766 , 2007, 0710.0839.

[71]  Stephan D. Price,et al.  The Tycho-2 Spectral Type Catalog , 2003 .

[72]  Submillimetre observations and modelling of Vega-type stars , 2003, astro-ph/0311593.

[73]  G. Rieke,et al.  Resolved debris discs around A stars in the Herschel DEBRIS survey , 2012, 1210.0547.

[74]  A MOVING CLUSTER DISTANCE TO THE EXOPLANET 2M1207b IN THE TW HYDRAE ASSOCIATION , 2005, astro-ph/0507416.

[75]  H. Kataza,et al.  Crystalline Silicate Feature of the Vega-like Star HD 145263 , 2004, astro-ph/0406508.

[76]  Bertrand Mennesson,et al.  EXOZODIACAL DUST LEVELS FOR NEARBY MAIN-SEQUENCE STARS: A SURVEY WITH THE KECK INTERFEROMETER NULLER , 2011 .

[77]  M. Meyer,et al.  DEBRIS DISKS IN THE UPPER SCORPIUS OB ASSOCIATION , 2009, 0909.4124.

[78]  Alycia J. Weinberger,et al.  A MAGELLAN MIKE AND SPITZER MIPS STUDY OF 1.5–1.0 M☉ STARS IN SCORPIUS-CENTAURUS , 2011 .

[79]  C. Beichman,et al.  MULTI-EPOCH OBSERVATIONS OF HD 69830: HIGH-RESOLUTION SPECTROSCOPY AND LIMITS TO VARIABILITY , 2011, 1108.4704.

[80]  Munetaka Ueno,et al.  The AKARI/IRC mid-infrared all-sky survey , 2010, 1003.0270.

[81]  C. Dominik,et al.  Age Dependence of the Vega Phenomenon: Theory , 2003, astro-ph/0308364.

[82]  To appear in The Astrophysical Journal An Excess Due to Small Grains Around The Nearby K0V Star HD69830: Asteroid or Cometary Debris? , 2005 .

[83]  M. Wyatt,et al.  Confusion limited surveys: using WISE to quantify the rarity of warm dust around Kepler stars , 2012, 1207.0521.

[84]  J. Chambers,et al.  The Primordial Excitation and Clearing of the Asteroid Belt , 2001 .

[85]  H. Kataza,et al.  THE ABSENCE OF COLD DUST AROUND WARM DEBRIS DISK STAR HD 15407A , 2012, 1210.0587.

[86]  D. Bayliss,et al.  STRUCTURE AND EVOLUTION OF DEBRIS DISKS AROUND F-TYPE STARS. I. OBSERVATIONS, DATABASE, AND BASIC EVOLUTIONARY ASPECTS , 2010, 1012.3631.

[87]  M. C. Wyatt,et al.  SPITZER EVIDENCE FOR A LATE-HEAVY BOMBARDMENT AND THE FORMATION OF UREILITES IN η CORVI At ∼1 Gyr , 2011, 1110.4172.

[88]  T. Forveille,et al.  Inhibition of giant-planet formation by rapid gas depletion around young stars , 1995, Nature.

[89]  P. Kalas,et al.  99 Herculis: host to a circumbinary polar‐ring debris disc , 2012, 1201.1911.

[90]  C. Dominik,et al.  Erratum: The absence of the 10 mu m silicate feature in the isolated Herbig Ae star HD 100453 , 2002 .

[91]  T. Löhne,et al.  Long-Term Collisional Evolution of Debris Disks , 2007, 0710.4294.

[92]  M. C. Wyatt,et al.  Target selection for the SUNS and DEBRIS surveys for debris discs in the solar neighbourhood , 2009, 0911.3426.

[93]  M. Wyatt,et al.  The scattering of small bodies in planetary systems: constraints on the possible orbits of cometary material , 2011, 1111.1858.

[94]  Prospects for detection of catastrophic collisions in debris disks , 2005, astro-ph/0503551.

[95]  K. Y. L. Su,et al.  Debris Disks around Sun-like Stars , 2007, 0710.5498.

[96]  G. Rieke,et al.  VARIABILITY OF THE INFRARED EXCESS OF EXTREME DEBRIS DISKS , 2012, 1205.1040.

[97]  R. Smith,et al.  Transience of Hot Dust around Sun-like Stars , 2006, astro-ph/0610102.

[98]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[99]  O. Absil,et al.  The twofold debris disk around HD 113766 A - Warm and cold dust as seen with VLTI/Midi and Herschel/Pacs , 2013, 1301.6876.

[100]  M. Wyatt,et al.  Debris from terrestrial planet formation: the Moon-forming collision , 2012, 1206.4190.

[101]  I. Song,et al.  Rapid disappearance of a warm, dusty circumstellar disk , 2012, Nature.

[102]  Astronomy,et al.  The Rise and Fall of Debris Disks: MIPS Observations of h and χ Persei and the Evolution of Mid-IR Emission from Planet Formation , 2007, 0709.2510.

[103]  O. Absil,et al.  Hot exozodiacal dust resolved around Vega with IOTA/IONIC , 2011, 1108.3698.

[104]  Miki Ishii,et al.  EXOPLANETS AND DISKS: THEIR FORMATION AND DIVERSITY , 2009 .

[105]  C. Dullemond,et al.  TRUNCATED DISKS IN TW Hya ASSOCIATION MULTIPLE STAR SYSTEMS , 2009, 0912.3537.