High Density Genetic Maps of Seashore Paspalum Using Genotyping-By-Sequencing and Their Relationship to The Sorghum Bicolor Genome

[1]  P. Qi,et al.  UGbS-Flex, a novel bioinformatics pipeline for imputation-free SNP discovery in polyploids without a reference genome: finger millet as a case study , 2018, BMC Plant Biology.

[2]  P. Raymer,et al.  Ploidy Level and Genetic Diversity in the Genus Paspalum, Group Disticha , 2017 .

[3]  Davoud Torkamaneh,et al.  Genome-Wide SNP Calling from Genotyping by Sequencing (GBS) Data: A Comparison of Seven Pipelines and Two Sequencing Technologies , 2016, PloS one.

[4]  R. K. Sharma,et al.  Next Generation Sequencing Technologies: The Doorway to the Unexplored Genomics of Non-Model Plants , 2015, Front. Plant Sci..

[5]  Hui Xiang,et al.  Erratum: Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean , 2015, Nature Biotechnology.

[6]  Hui Xiang,et al.  Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean , 2015, Nature Biotechnology.

[7]  M. Causse,et al.  Whole genome resequencing in tomato reveals variation associated with introgression and breeding events , 2013, BMC Genomics.

[8]  P. Raymer,et al.  Development and Characterization of Seashore Paspalum SSR Markers , 2013 .

[9]  Lihuang Zhu,et al.  Identifying the Genome-Wide Sequence Variations and Developing New Molecular Markers for Genetics Research by Re-Sequencing a Landrace Cultivar of Foxtail Millet , 2013, PloS one.

[10]  A. Kilian,et al.  Linkage Maps of Lowland and Upland Tetraploid Switchgrass Ecotypes , 2013, BioEnergy Research.

[11]  Sunil Kumar,et al.  Salinity tolerance in plants: breeding and genetic engineering. , 2012 .

[12]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[13]  J. Poland,et al.  Development of High-Density Genetic Maps for Barley and Wheat Using a Novel Two-Enzyme Genotyping-by-Sequencing Approach , 2012, PloS one.

[14]  Lin Fang,et al.  Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes , 2011, Nature Biotechnology.

[15]  A. Amores,et al.  Stacks: Building and Genotyping Loci De Novo From Short-Read Sequences , 2011, G3: Genes | Genomes | Genetics.

[16]  Robert J. Elshire,et al.  A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species , 2011, PloS one.

[17]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[18]  Yexiong Qian,et al.  A genomic analysis of disease-resistance genes encoding nucleotide binding sites in Sorghum bicolor , 2010, Genetics and molecular biology.

[19]  Mihaela M. Martis,et al.  The Sorghum bicolor genome and the diversification of grasses , 2009, Nature.

[20]  P. Etter,et al.  Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers , 2008, PloS one.

[21]  Anete P. Souza,et al.  OneMap: software for genetic mapping in outcrossing species. , 2007, Hereditas.

[22]  P. Raymer,et al.  Characterization of Seashore Paspalum (Paspalum vaginatum Swartz) Germplasm by Transferred SSRs from Wheat, Maize and Sorghum , 2006, Genetic Resources and Crop Evolution.

[23]  P. Klein,et al.  Comprehensive Molecular Cytogenetic Analysis of Sorghum Genome Architecture: Distribution of Euchromatin, Heterochromatin, Genes and Recombination in Comparison to Rice , 2005, Genetics.

[24]  Gene A. Brewer,et al.  Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Geung-Joo Lee,et al.  Salinity Tolerance of Seashore Paspalum Ecotypes: Shoot Growth Responses and Criteria , 2004 .

[26]  Jian-Qun Chen,et al.  Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes , 2004, Molecular Genetics and Genomics.

[27]  T. Flowers Improving crop salt tolerance. , 2004, Journal of experimental botany.

[28]  R. Duncan,et al.  Seashore Paspalum: The Environmental Turfgrass , 2000 .

[29]  K. Devos,et al.  Genome Relationships: The Grass Model in Current Research , 2000, Plant Cell.

[30]  R. Jarret,et al.  Characterization and analysis of simple sequence repeat (SSR) loci in seashore paspalum (Paspalum vaginatum Swartz) , 1995, Theoretical and Applied Genetics.

[31]  R. Jarret,et al.  Genetic relationships and variation among ecotypes of seashore paspalum (Paspalum vaginatum) determined by random amplified polymorphic DNA markers. , 1994, Genome.

[32]  P. Qi,et al.  Genome Structure and Comparative Genomics , 2017 .

[33]  A. Doust,et al.  Genetics and Genomics of Setaria , 2017 .

[34]  J. Ooijen,et al.  JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations , 2006 .

[35]  M. Wang,et al.  Molecular characterization of genetic diversity in the USDA seashore paspalum germplasm collection. , 2005 .

[36]  S. Lincoln Constructing genetic maps with MAPMAKER/EXP 3.0. , 1992 .