Algorithm Engineering for some Complex Practise Problems: Exact Algorithms, Heuristics and Hybrid Evolutionary Algorithms

This work deals with the design of exact algorithms and heuristics for complex optimization problems that origin from three practical applications and one classical combinatorial task. We obtain exact algorithms by modeling our problems in terms of mathematical optimization problems and applying suitable software tools to solve this models. Because of the complexity of our problems, exact algorithms cannot solve large instances within adequate time. Therefore, on the one hand, we derive efficient heuristics by adapting algorithms for similar mathematical problems in a suitable manner. On the other hand, evolutionary algorithms have shown to be successfully applicable to many hard mathematical problems. For that reason, we experimentally determine appropriate EA frameworks, hybridizing the evolutionary operators with our problem specific heuristics.

[1]  Mehran Hojati,et al.  An integer linear programming-based heuristic for scheduling heterogeneous, part-time service employees , 2011, Eur. J. Oper. Res..

[2]  Xinjie Yu,et al.  Introduction to evolutionary algorithms , 2010, The 40th International Conference on Computers & Indutrial Engineering.

[3]  William W. L. Chen On irregularities of distribution. , 1980 .

[4]  A. Land,et al.  An Automatic Method for Solving Discrete Programming Problems , 1960, 50 Years of Integer Programming.

[5]  Sebastián Urrutia,et al.  A General VNS heuristic for the traveling salesman problem with time windows , 2010, Discret. Optim..

[6]  Anup Kumar Bandyopadhyay,et al.  COMPARATIVE STUDY OF SOME SOLUTION METHODS FOR TRAVELING SALESMAN PROBLEM USING GENETIC ALGORITHMS , 2008, Cybern. Syst..

[7]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[8]  H. D. Brunk,et al.  Statistical inference under order restrictions : the theory and application of isotonic regression , 1973 .

[9]  K. F. Roth Remark concerning integer sequences , 1964 .

[10]  Juraj Hromkovic,et al.  The Parameterized Approximability of TSP with Deadlines , 2007, Theory of Computing Systems.

[11]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[12]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[13]  Thomas Slawig,et al.  Parameter optimization and uncertainty analysis in a model of oceanic CO2 uptake using a hybrid algorithm and algorithmic differentiation , 2010 .

[14]  Andreas Oschlies,et al.  Simultaneous data-based optimization of a 1D-ecosystem model at three locations in the North Atlantic: Part I— Method and parameter estimates , 2003 .

[15]  H. Crowder,et al.  Solving Large-Scale Symmetric Travelling Salesman Problems to Optimality , 1980 .

[16]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[17]  R. J. Dakin,et al.  A tree-search algorithm for mixed integer programming problems , 1965, Comput. J..

[18]  Chellapilla Patvardhan,et al.  Solution of real-parameter optimization problems using novel Quantum Evolutionary Algorithm with applications in power dispatch , 2009, 2009 IEEE Congress on Evolutionary Computation.

[19]  Sundaram Suresh,et al.  Divisible load scheduling in distributed system with buffer constraints: genetic algorithm and linear programming approach , 2006, Int. J. Parallel Emergent Distributed Syst..

[20]  Christodoulos A. Floudas,et al.  Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications , 2005, Ann. Oper. Res..

[21]  Bart Selman,et al.  Boosting Combinatorial Search Through Randomization , 1998, AAAI/IAAI.

[22]  Michael Defoin-Platel,et al.  Quantum-Inspired Evolutionary Algorithm: A Multimodel EDA , 2009, IEEE Transactions on Evolutionary Computation.

[23]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.

[24]  A. Oschlies,et al.  An eddy‐permitting coupled physical‐biological model of the North Atlantic: 2. Ecosystem dynamics and comparison with satellite and JGOFS local studies data , 2000 .

[25]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[26]  Jong-Hwan Kim,et al.  On setting the parameters of quantum-inspired evolutionary algorithm for practical application , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[27]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[28]  Sönke Hartmann,et al.  A self‐adapting genetic algorithm for project scheduling under resource constraints , 2002 .

[29]  Panos M. Pardalos,et al.  A Hybrid Genetic—GRASP Algorithm Using Lagrangean Relaxation for the Traveling Salesman Problem , 2005, J. Comb. Optim..

[30]  J. Spencer Probabilistic Methods in Combinatorics , 1974 .

[31]  Sartaj Sahni,et al.  Computationally Related Problems , 1974, SIAM J. Comput..

[32]  J. Beck,et al.  Discrepancy Theory , 1996 .

[33]  Hesham K. Alfares,et al.  Survey, Categorization, and Comparison of Recent Tour Scheduling Literature , 2004, Ann. Oper. Res..

[34]  Jirí Matousek Derandomization in Computational Geometry , 2000, Handbook of Computational Geometry.

[35]  Ralph E. Gomory,et al.  Outline of an Algorithm for Integer Solutions to Linear Programs and An Algorithm for the Mixed Integer Problem , 2010, 50 Years of Integer Programming.

[36]  Gexiang Zhang,et al.  Quantum-inspired evolutionary algorithms: a survey and empirical study , 2011, J. Heuristics.

[37]  J. Spencer Six standard deviations suffice , 1985 .

[38]  Peter Kosmol,et al.  Methoden zur numerischen Behandlung nichtlinearer Gleichungen und Optimierungsaufgaben , 1989 .

[39]  József Beck,et al.  Roth’s estimate of the discrepancy of integer sequences is nearly sharp , 1981, Comb..

[40]  Nicos Christofides Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem , 1976, Operations Research Forum.

[41]  Joel H. Spencer,et al.  Deterministic Discrepancy Minimization , 2011, ESA.

[42]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[43]  George B. Dantzig,et al.  Solution of a Large-Scale Traveling-Salesman Problem , 1954, Oper. Res..

[44]  Michel Gendreau,et al.  A Generalized Insertion Heuristic for the Traveling Salesman Problem with Time Windows , 1998, Oper. Res..

[45]  B. Valkó Discrepancy of Arithmetic Progressions in Higher Dimensions , 2002 .

[46]  Jean-Charles Billaut,et al.  Multicriteria scheduling problems: a survey , 2001, RAIRO Oper. Res..

[47]  Ingo Wegener,et al.  Complexity theory - exploring the limits of efficient algorithms , 2005 .

[48]  Aravind Srinivasan,et al.  New approaches to covering and packing problems , 2001, SODA '01.

[49]  Lance Fortnow,et al.  A Short History of Computational Complexity , 2003, Bull. EATCS.

[50]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study , 2007 .

[51]  J. Matousek,et al.  Geometric Discrepancy: An Illustrated Guide , 2009 .

[52]  Matthias Müller-Hannemann,et al.  Algorithm Engineering: Bridging the Gap between Algorithm Theory and Practice [outcome of a Dagstuhl Seminar] , 2010, Algorithm Engineering.

[53]  Martin W. P. Savelsbergh,et al.  Local search in routing problems with time windows , 1984 .

[54]  Matteo Fischetti,et al.  A polyhedral study of the asymmetric traveling salesman problem with time windows , 2000, Networks.

[55]  Anand Srivastav,et al.  Derandomization in Combinatorial Optimization , 2001 .

[56]  한국현,et al.  Quantum-inspired evolutionary algorithm = 양자 개념을 도입한 진화 알고리즘 , 2003 .

[57]  Frits C. R. Spieksma,et al.  Interval scheduling: A survey , 2007 .

[58]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[59]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[60]  Jean-Yves Potvin,et al.  Genetic Algorithms for the Traveling Salesman Problem , 2005 .

[61]  David S. Johnson,et al.  `` Strong '' NP-Completeness Results: Motivation, Examples, and Implications , 1978, JACM.

[62]  Bernard Chazelle,et al.  The Discrepancy Method , 1998, ISAAC.

[63]  William Leithead,et al.  Survey of gain-scheduling analysis and design , 2000 .

[64]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[65]  Frank Werner,et al.  Complexity of mixed shop scheduling problems: A survey , 2000, Eur. J. Oper. Res..

[66]  Bertrand M. T. Lin,et al.  A concise survey of scheduling with time-dependent processing times , 2004, Eur. J. Oper. Res..

[67]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[68]  Jong-Hwan Kim,et al.  Quantum-inspired evolutionary algorithm for a class of combinatorial optimization , 2002, IEEE Trans. Evol. Comput..

[69]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[70]  Malte Prieß,et al.  Surrogate-based optimization of climate model parameters using response correction , 2011, J. Comput. Sci..

[71]  N. Biggs THE TRAVELING SALESMAN PROBLEM A Guided Tour of Combinatorial Optimization , 1986 .

[72]  Michel Gendreau,et al.  On the flexibility of constraint programming models: From single to multiple time windows for the traveling salesman problem , 1999, Eur. J. Oper. Res..

[73]  John S. Parslow,et al.  A model of annual plankton cycles , 2013 .

[74]  Kalyanmoy Deb,et al.  Genetic Algorithms, Noise, and the Sizing of Populations , 1992, Complex Syst..

[75]  Anand Srivastav,et al.  Multicolour Discrepancies , 2003, Comb. Probab. Comput..

[76]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.

[77]  Daniel J. Rosenkrantz,et al.  An analysis of several heuristics for the traveling salesman problem , 2013, Fundamental Problems in Computing.

[78]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[79]  J. Monnot,et al.  The Traveling Salesman Problem and its Variations , 2014 .

[80]  Moni Naor,et al.  The Probabilistic Method Yields Deterministic Parallel Algorithms , 1994, J. Comput. Syst. Sci..

[81]  Clarisse Dhaenens,et al.  A NEW GENETIC ALGORITHM APPLIED TO THE TRAVELING SALESMAN PROBLEM , 2008 .

[82]  Peter Brucker,et al.  Complexity of shop-scheduling problems with fixed number of jobs: a survey , 2007, Math. Methods Oper. Res..

[83]  Philip E. Gill,et al.  Practical optimization , 1981 .

[84]  Prabhakar Raghavan,et al.  Randomized rounding: A technique for provably good algorithms and algorithmic proofs , 1985, Comb..

[85]  Matteo Fischetti,et al.  Konrad-zuse-zentrum F ¨ Ur Informationstechnik Berlin Solving the Asymmetric Travelling Salesman Problem with Time Windows by Branch-and-cut Solving the Asymmetric Travelling Salesman Problem with Time Windows by Branch-and-cut , 2022 .

[86]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[87]  W. Cheney,et al.  Numerical analysis: mathematics of scientific computing (2nd ed) , 1991 .