EagleMine: Vision-guided Micro-clusters recognition and collective anomaly detection

[1]  Philip S. Yu,et al.  A Survey on Knowledge Graphs: Representation, Acquisition, and Applications , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[2]  Wenwu Zhu,et al.  Deep Learning on Graphs: A Survey , 2018, IEEE Transactions on Knowledge and Data Engineering.

[3]  Yang Chen,et al.  Visual Analysis of Collective Anomalies Using Faceted High-Order Correlation Graphs , 2020, IEEE Transactions on Visualization and Computer Graphics.

[4]  Xiaojun Chang,et al.  Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks , 2020, KDD.

[5]  Philip S. Yu,et al.  Algorithms for Estimating the Partition Function of Restricted Boltzmann Machines (Extended Abstract) , 2020 .

[6]  Chen Gong,et al.  Multiscale Dynamic Graph Convolutional Network for Hyperspectral Image Classification , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Avrim Blum,et al.  Foundations of Data Science , 2020 .

[8]  Xueqi Cheng,et al.  CatchCore: Catching Hierarchical Dense Subtensor , 2019, ECML/PKDD.

[9]  Lei Liu,et al.  A Collective Anomaly Detection Approach for Multidimensional Streams in Mobile Service Security , 2019, IEEE Access.

[10]  Pierre Vandergheynst,et al.  Anomaly Detection in the Dynamics of Web and Social Networks Using Associative Memory , 2019, WWW.

[11]  Philip S. Yu,et al.  A Comprehensive Survey on Graph Neural Networks , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[12]  Christos Faloutsos,et al.  Beyond Outlier Detection: LookOut for Pictorial Explanation , 2018, ECML/PKDD.

[13]  Ryan A. Rossi,et al.  Interactive Visual Graph Mining and Learning , 2018, ACM Trans. Intell. Syst. Technol..

[14]  Mohiuddin Ahmed,et al.  Collective Anomaly Detection Techniques for Network Traffic Analysis , 2018 .

[15]  Leman Akoglu,et al.  Discovering Communities and Anomalies in Attributed Graphs , 2018, ACM Trans. Knowl. Discov. Data.

[16]  Yunpeng Zhao,et al.  A survey on theoretical advances of community detection in networks , 2017, ArXiv.

[17]  Frédo Durand,et al.  Learning Visual Importance for Graphic Designs and Data Visualizations , 2017, UIST.

[18]  Leland McInnes,et al.  hdbscan: Hierarchical density based clustering , 2017, J. Open Source Softw..

[19]  Christos Faloutsos,et al.  M-Zoom: Fast Dense-Block Detection in Tensors with Quality Guarantees , 2016, ECML/PKDD.

[20]  Hyun Ah Song,et al.  FRAUDAR: Bounding Graph Fraud in the Face of Camouflage , 2016, KDD.

[21]  Miriam Heynckes,et al.  The predictive vs. the simulating brain: A literature review on the mechanisms behind mimicry , 2016 .

[22]  Nicole Fruehauf Computing And Graphics In Statistics , 2016 .

[23]  Christos Faloutsos,et al.  A General Suspiciousness Metric for Dense Blocks in Multimodal Data , 2015, 2015 IEEE International Conference on Data Mining.

[24]  James R. Foulds,et al.  Collective Spammer Detection in Evolving Multi-Relational Social Networks , 2015, KDD.

[25]  Danai Koutra,et al.  TimeCrunch: Interpretable Dynamic Graph Summarization , 2015, KDD.

[26]  Danai Koutra,et al.  Perseus: An Interactive Large-Scale Graph Mining and Visualization Tool , 2015, Proc. VLDB Endow..

[27]  Arthur Zimek,et al.  Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection , 2015, ACM Trans. Knowl. Discov. Data.

[28]  Jure Leskovec,et al.  Inferring Networks of Substitutable and Complementary Products , 2015, KDD.

[29]  Rongrong Ji,et al.  Understanding image structure via hierarchical shape parsing , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Christos Faloutsos,et al.  ND-Sync: Detecting Synchronized Fraud Activities , 2015, PAKDD.

[31]  Ryan A. Rossi,et al.  Interactive Visual Graph Analytics on the Web , 2015, ICWSM.

[32]  Zhihua Cai,et al.  Boosting for Multi-Graph Classification , 2015, IEEE Transactions on Cybernetics.

[33]  Svetlozar T. Rachev,et al.  Composite Goodness-of-Fit Tests for Left-Truncated Loss Samples , 2015 .

[34]  Christos Faloutsos,et al.  CatchSync: catching synchronized behavior in large directed graphs , 2014, KDD.

[35]  Danai Koutra,et al.  Graph based anomaly detection and description: a survey , 2014, Data Mining and Knowledge Discovery.

[36]  Alessandro Laio,et al.  Clustering by fast search and find of density peaks , 2014, Science.

[37]  Christos Faloutsos,et al.  Inferring Strange Behavior from Connectivity Pattern in Social Networks , 2014, PAKDD.

[38]  Danai Koutra,et al.  Net-Ray: Visualizing and Mining Billion-Scale Graphs , 2014, PAKDD.

[39]  Mohammed J. Zaki Data Mining and Analysis: Fundamental Concepts and Algorithms , 2014 .

[40]  Danai Koutra,et al.  VOG: Summarizing and Understanding Large Graphs , 2014, SDM.

[41]  Philip S. Yu,et al.  Bag Constrained Structure Pattern Mining for Multi-Graph Classification , 2014, IEEE Transactions on Knowledge and Data Engineering.

[42]  Jure Leskovec,et al.  From amateurs to connoisseurs: modeling the evolution of user expertise through online reviews , 2013, WWW.

[43]  Christos Faloutsos,et al.  Graph Mining: Laws, Tools, and Case Studies , 2012, Synthesis Lectures on Data Mining and Knowledge Discovery.

[44]  Jure Leskovec,et al.  Image Labeling on a Network: Using Social-Network Metadata for Image Classification , 2012, ECCV.

[45]  Michael Sirivianos,et al.  Aiding the Detection of Fake Accounts in Large Scale Social Online Services , 2012, NSDI.

[46]  Krishna P. Gummadi,et al.  Understanding and combating link farming in the twitter social network , 2012, WWW.

[47]  James J. DiCarlo,et al.  How Does the Brain Solve Visual Object Recognition? , 2012, Neuron.

[48]  Krzysztof Z. Gajos,et al.  Evaluation of Artery Visualizations for Heart Disease Diagnosis , 2011, IEEE Transactions on Visualization and Computer Graphics.

[49]  Christos Faloutsos,et al.  Spectral Analysis for Billion-Scale Graphs: Discoveries and Implementation , 2011, PAKDD.

[50]  Charless C. Fowlkes,et al.  Contour Detection and Hierarchical Image Segmentation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[52]  Christos Faloutsos,et al.  EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs , 2009, 2009 IEEE International Conference on Data Mining Workshops.

[53]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[54]  Krishna P. Gummadi,et al.  Measurement and analysis of online social networks , 2007, IMC '07.

[55]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[56]  Christian Böhm,et al.  Robust information-theoretic clustering , 2006, KDD '06.

[57]  Larry Wasserman,et al.  All of Nonparametric Statistics (Springer Texts in Statistics) , 2006 .

[58]  R. Grossman,et al.  Graph-theoretic scagnostics , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[59]  Christos Faloutsos,et al.  Fully automatic cross-associations , 2004, KDD.

[60]  Greg Hamerly,et al.  Learning the k in k-means , 2003, NIPS.

[61]  Josep M. Oller,et al.  Hypothesis testing: a model selection approach , 2002 .

[62]  Andrew W. Moore,et al.  X-means: Extending K-means with Efficient Estimation of the Number of Clusters , 2000, ICML.

[63]  Jos B. T. M. Roerdink,et al.  The Watershed Transform: Definitions, Algorithms and Parallelization Strategies , 2000, Fundam. Informaticae.

[64]  Jon Kleinberg,et al.  Authoritative sources in a hyperlinked environment , 1999, SODA '98.

[65]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[66]  Jiong Yang,et al.  STING: A Statistical Information Grid Approach to Spatial Data Mining , 1997, VLDB.

[67]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[68]  Tian Zhang,et al.  BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.

[69]  E.E. Pissaloux,et al.  Image Processing , 1994, Proceedings. Second Euromicro Workshop on Parallel and Distributed Processing.

[70]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[71]  Peter Elias,et al.  Universal codeword sets and representations of the integers , 1975, IEEE Trans. Inf. Theory.

[72]  Thomas S. Huang,et al.  Image processing , 1971 .

[73]  H. R. Thompson,et al.  Truncated Normal Distributions , 1950, Nature.

[74]  P. J. Huber Projection Pursuit for , 2022 .