Equational type characterization for σ-complete MV-algebras

In the framework of algebras with infinitary operations, an equational base for the category of σ-complete MV-algebras is given. In this way, we study some particular objects as simple algebras, directly irreducible algebras, injectives, etc. A completeness theorem with respect to the standard MV-algebra, considered as σ-complete MV-algebra, is obtained. Finally, we apply this result to the study of σ-complete Boolean algebras and σ-complete product MV-algebras.

[1]  U. Höhle Commutative, residuated 1—monoids , 1995 .

[2]  Daniele Mundici Tensor Products and the Loomis-Sikorski Theorem for MV-Algebras , 1999 .

[3]  Mirko Navara,et al.  The σ-complete MV-algebras which have enough states , 2005 .

[4]  D. Mundici,et al.  Algebraic Foundations of Many-Valued Reasoning , 1999 .

[5]  P. Halmos Lectures on Boolean Algebras , 1963 .

[6]  Anatolij Dvurečenskij,et al.  Loomis-sikorski theorem for σ-complete MV-algebras and ℓ-groups , 2000, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[7]  Stefan Geschke,et al.  Injective and projective T-Boolean algebras , 2007 .

[8]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[9]  Daniele Mundici,et al.  CHAPTER 21 – Probability on MV-Algebras , 2002 .

[10]  Petr Cintula,et al.  Product Ł ukasiewicz Logic , 2004, Arch. Math. Log..

[11]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[12]  On the representation of $\sigma$-complete Boolean algebras , 1947 .

[13]  J. Słomiński,et al.  The theory of abstract algebras with infinitary operations , 1959 .

[14]  R. Goodstein Boolean algebra , 1963 .

[15]  F. Montagna Functorial Representation Theorems for MVΔ Algebras with Additional Operators , 2001 .

[16]  Franco Montagna Storage Operators and Multiplicative Quantifiers in Many-valued Logics , 2004, J. Log. Comput..

[17]  C. Chang,et al.  A new proof of the completeness of the Łukasiewicz axioms , 1959 .

[18]  Mirko Navara,et al.  Kleene-Isomorphic s -Complete MV-Algebras with Product are Isomorphic , 2006, J. Multiple Valued Log. Soft Comput..

[19]  J. Monk Nontrivial ${\mathfrak m}$-injective Boolean algebras do not exist , 1967 .

[20]  Beloslav Riečan,et al.  Probability on MV algebras , 1997 .

[21]  L. P. Belluce α-Complete MV-Algebras , 1995 .

[22]  Franco Montagna,et al.  An Algebraic Approach to Propositional Fuzzy Logic , 2000, J. Log. Lang. Inf..