Equational type characterization for σ-complete MV-algebras
暂无分享,去创建一个
[1] U. Höhle. Commutative, residuated 1—monoids , 1995 .
[2] Daniele Mundici. Tensor Products and the Loomis-Sikorski Theorem for MV-Algebras , 1999 .
[3] Mirko Navara,et al. The σ-complete MV-algebras which have enough states , 2005 .
[4] D. Mundici,et al. Algebraic Foundations of Many-Valued Reasoning , 1999 .
[5] P. Halmos. Lectures on Boolean Algebras , 1963 .
[6] Anatolij Dvurečenskij,et al. Loomis-sikorski theorem for σ-complete MV-algebras and ℓ-groups , 2000, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[7] Stefan Geschke,et al. Injective and projective T-Boolean algebras , 2007 .
[8] Petr Hájek,et al. Metamathematics of Fuzzy Logic , 1998, Trends in Logic.
[9] Daniele Mundici,et al. CHAPTER 21 – Probability on MV-Algebras , 2002 .
[10] Petr Cintula,et al. Product Ł ukasiewicz Logic , 2004, Arch. Math. Log..
[11] C. Chang,et al. Algebraic analysis of many valued logics , 1958 .
[12] On the representation of $\sigma$-complete Boolean algebras , 1947 .
[13] J. Słomiński,et al. The theory of abstract algebras with infinitary operations , 1959 .
[14] R. Goodstein. Boolean algebra , 1963 .
[15] F. Montagna. Functorial Representation Theorems for MVΔ Algebras with Additional Operators , 2001 .
[16] Franco Montagna. Storage Operators and Multiplicative Quantifiers in Many-valued Logics , 2004, J. Log. Comput..
[17] C. Chang,et al. A new proof of the completeness of the Łukasiewicz axioms , 1959 .
[18] Mirko Navara,et al. Kleene-Isomorphic s -Complete MV-Algebras with Product are Isomorphic , 2006, J. Multiple Valued Log. Soft Comput..
[19] J. Monk. Nontrivial ${\mathfrak m}$-injective Boolean algebras do not exist , 1967 .
[20] Beloslav Riečan,et al. Probability on MV algebras , 1997 .
[21] L. P. Belluce. α-Complete MV-Algebras , 1995 .
[22] Franco Montagna,et al. An Algebraic Approach to Propositional Fuzzy Logic , 2000, J. Log. Lang. Inf..