Monte Carlo wavelets: a randomized approach to frame discretization
暂无分享,去创建一个
Lorenzo Rosasco | Stefano Vigogna | Valeriya Naumova | Zeljko Kereta | Ernesto De Vito | L. Rosasco | S. Vigogna | E. De Vito | Ž. Kereta | V. Naumova
[1] Pierre Vandergheynst,et al. Wavelets on Graphs via Spectral Graph Theory , 2009, ArXiv.
[2] D. Speegle,et al. The discretization problem for continuous frames , 2016, Advances in Mathematics.
[3] Hans G. Feichtinger,et al. Geometric Space–Frequency Analysis on Manifolds , 2015, 1512.08668.
[4] Ulrike von Luxburg,et al. Construction of Tight Frames on Graphs and Application to Denoising , 2014, 1408.4012.
[5] José Luis Romero,et al. Density of sampling and interpolation in reproducing kernel Hilbert spaces , 2016, J. Lond. Math. Soc..
[6] Michael Christ,et al. A T(b) theorem with remarks on analytic capacity and the Cauchy integral , 1990 .
[7] Lea Fleischer,et al. Regularization of Inverse Problems , 1996 .
[8] Mikhail Belkin,et al. On Learning with Integral Operators , 2010, J. Mach. Learn. Res..
[9] M. Fornasier,et al. Continuous Frames, Function Spaces, and the Discretization Problem , 2004, math/0410571.
[10] Gerard Kerkyacharian,et al. Heat Kernel Generated Frames in the Setting of Dirichlet Spaces , 2012, 1206.0463.