Dense Multiscale Motion Extraction from Cardiac Cine MR Tagging using HARP Technology

We propose an operational method to extract the left ventricle (LV) systole dynamics using harmonic phase (HARP) images extracted from tagged cardiac MR sequences. Established techniques to generate HARP sequences provide independent evidence for motion extraction, in the sense that the combined linear system for scalar brightness conservation, applied to the HARP images, can be uniquely solved for a dense field of motion parameters without the need for regularization. In contrast to some of the previously proposed popular methods, no segmentation or tracking of tags over time, nor interpolation of a sparse motion field explicitly coupled to the tag pattern is required, and the problem of tag fading is bypassed. An important novelty is the incorporation of automatic local scale selection so as to obtain a robust solution, which not only yields a stable, but also a smoothly varying motion field of the (healthy) LV myocardial wall. The scheme relies on an integer parameter representing order of approximation, and allows one to simultaneously obtain a dense field of differential tensors capturing the low order differential structure of the motion field, which is useful for the computation of relevant local quantities such as strain rates and material acceleration fields. The methodology is generic and straightforward to implement, and can be generalized to 3D and, in principle, to account for higher order differential structure.

[1]  Leon Axel,et al.  Dense Myocardium Deformation Estimation for 2D Tagged MRI , 2005, FIMH.

[2]  Jerry L. Prince,et al.  Imaging heart motion using harmonic phase MRI , 2000, IEEE Transactions on Medical Imaging.

[3]  Timo Kohlberger,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Variational Optic Flow Computation in Real-time Variational Optic Flow Computation in Real-time , 2022 .

[4]  A. Young,et al.  Three-dimensional motion and deformation of the heart wall: estimation with spatial modulation of magnetization--a model-based approach. , 1992, Radiology.

[5]  E. Zerhouni,et al.  Human heart: tagging with MR imaging--a method for noninvasive assessment of myocardial motion. , 1988, Radiology.

[6]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[7]  Wiro J. Niessen,et al.  Optic Flow and Stereo , 1997, Gaussian Scale-Space Theory.

[8]  Peter Boesiger,et al.  Myocardial tagging with 3D‐CSPAMM , 2002, Journal of magnetic resonance imaging : JMRI.

[9]  Carl-Fredrik Westin,et al.  Phase-Driven Finite Element Model for Spatio-temporal Tracking in Cardiac Tagged MRI , 2001, MICCAI.

[10]  Joachim Weickert,et al.  Relations Between Regularization and Diffusion Filtering , 2000, Journal of Mathematical Imaging and Vision.

[11]  Jerry L Prince,et al.  Real‐time imaging of two‐dimensional cardiac strain using a harmonic phase magnetic resonance imaging (HARP‐MRI) pulse sequence , 2003, Magnetic resonance in medicine.

[12]  Jerry L. Prince,et al.  Fast tracking of cardiac motion using 3D-HARP , 2005, IEEE Transactions on Biomedical Engineering.

[13]  L. Axel,et al.  Heart wall motion: improved method of spatial modulation of magnetization for MR imaging. , 1989, Radiology.

[14]  S. Maier,et al.  Improved myocardial tagging contrast , 1993, Magnetic resonance in medicine.

[15]  ter Bm Bart Haar Romeny,et al.  Multiscale optic flow analysis of MR tagging heart image sequences , 2003 .

[16]  H. Wen,et al.  High-resolution strain analysis of the human heart with fast-DENSE. , 1999, Journal of magnetic resonance.

[17]  Mads Nielsen,et al.  Computing Optic Flow by Scale-Space Integration of Normal Flow , 2001, Scale-Space.

[18]  Amir A. Amini A Scalar Function Formulation for Optical Flow , 1994, ECCV.

[19]  Luc Florack,et al.  Optic Flow Computation from Cardiac MR Tagging Using a Multiscale Differential Method: A Comparative Study with Velocity-Encoded MRI , 2003, MICCAI.

[20]  M. Viergever,et al.  Spatiotemporal operators and optic flow , 1995, Proceedings of the Workshop on Physics-Based Modeling in Computer Vision.

[21]  H. Wen,et al.  DENSE: displacement encoding with stimulated echoes in cardiac functional MRI. , 1999, Journal of magnetic resonance.

[22]  Cengizhan Ozturk,et al.  Estimating motion from MRI data , 2003, Proc. IEEE.

[23]  Amir A. Amini,et al.  Biventricular myocardial strains via nonrigid registration of AnFigatomical NURBS models , 2006, IEEE Transactions on Medical Imaging.

[24]  Jerry L Prince,et al.  Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[25]  F. Epstein,et al.  Complementary displacement‐encoded MRI for contrast‐enhanced infarct detection and quantification of myocardial function in mice , 2004, Magnetic resonance in medicine.

[26]  Jerry L. Prince,et al.  Real-Time Imaging of Cardiac Strain using Ultra-Fast HARP Sequence , 2001 .

[27]  J. Zwanenburg,et al.  DENSE and HARP: Two views on the same technique of phase‐based strain imaging , 2006, Journal of magnetic resonance imaging : JMRI.

[28]  Max A. Viergever,et al.  Spatiotemporal analysis of left ventricular motion , 1995, Medical Imaging.

[29]  M. Nielsen,et al.  The Intrinsic Structure of the Optic Flow Field , 1994 .

[30]  Jerry L Prince,et al.  Quantitative Ischemia Detection During Cardiac Magnetic Resonance Stress Testing by Use of FastHARP , 2003, Circulation.

[31]  Leon Axel,et al.  Tagged Magnetic Resonance Imaging of the Heart: a Survey , 2004 .

[32]  Jerry L. Prince,et al.  Motion estimation from tagged MR image sequences , 1992, IEEE Trans. Medical Imaging.

[33]  H. Wen,et al.  Mixed echo train acquisition displacement encoding with stimulated echoes: An optimized DENSE method for in vivo functional imaging of the human heart , 2001, Magnetic resonance in medicine.

[34]  Luc Florack,et al.  The Intrinsic Structure of Optic Flow Incorporating Measurement Duality , 1998, International Journal of Computer Vision.

[35]  Luc Florack,et al.  Binocular Stereo from Grey-Scale Images , 1999, Journal of Mathematical Imaging and Vision.

[36]  Thomas Brox,et al.  High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.

[37]  L. Axel,et al.  MR imaging of motion with spatial modulation of magnetization. , 1989, Radiology.

[38]  Amir A. Amini,et al.  Accurate recovery of 4D left ventricular deformations using volumetric B-splines incorporating phase based displacement estimates , 2006, SPIE Medical Imaging.

[39]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[40]  Alistair A. Young,et al.  Model tags: direct three-dimensional tracking of heart wall motion from tagged magnetic resonance images , 1999, Medical Image Anal..

[41]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[42]  Jerry L Prince,et al.  Fast determination of regional myocardial strain fields from tagged cardiac images using harmonic phase MRI. , 2000, Circulation.

[43]  Aaron T. Hess,et al.  Tracking Myocardial Motion From Cine DENSE Images Using Spatiotemporal Phase Unwrapping and Temporal Fitting , 2007, IEEE Transactions on Medical Imaging.

[44]  Max A. Viergever,et al.  Multiscale Approach to Image Sequence Analysis , 1997, Comput. Vis. Image Underst..

[45]  Max A. Viergever,et al.  A Multiscale Taylor Series Approach to Optic Flow and Stereo: A Generalization of Optic Flow under the Aperture , 1999, Scale-Space.