Direct Utilization of Liquid Fuels in SOFC for Portable Applications: Challenges for the Selection of Alternative Anodes

Solid oxide fuel cells (SOFC) have the advantage of being able to operate with fuels other than hydrogen. In particular, liquid fuels are especially attractive for powering portable applications such as small power generators or auxiliary power units, in which case the direct utilization of the fuel would be convenient. Although liquid fuels are easier to handle and transport than hydrogen, their direct use in SOFC can lead to anode deactivation due to carbon formation, especially on traditional nickel/yttria stabilized zirconia (Ni/YSZ) anodes. Significant advances have been made in anodic materials that are resistant to carbon formation but often these materials are less electrochemically active than Ni/YSZ. In this review the challenges of using liquid fuels directly in SOFC, in terms of gas-phase and catalytic reactions within the anode chamber, will be discussed and the alternative anode materials so far investigated will be compared.

[1]  R. Mukundan,et al.  Sulfur Tolerant Anodes for SOFCs , 2004 .

[2]  C. Bagger,et al.  A solid oxide fuel cell with a gadolinia-doped ceria anode: preparation and performance , 1999 .

[3]  Hongpeng He,et al.  Carbon deposition on Ni/YSZ composites exposed to humidified methane , 2007 .

[4]  John T. S. Irvine,et al.  Improvement of the electrochemical properties of novel solid oxide fuel cell anodes, La0.75Sr0.25Cr0.5Mn0.5O3−δ and La4Sr8Ti11Mn0.5Ga0.5O37.5−δ, using Cu–YSZ-based cermets , 2007 .

[5]  Jürgen Fleig,et al.  Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3-δ model electrodes , 2006 .

[6]  Harold H. Kung,et al.  Methanol production and use , 1994 .

[7]  Wei Wang,et al.  Methane-fueled SOFC with traditional nickel-based anode by applying Ni/Al2O3 as a dual-functional layer , 2009 .

[8]  P. Forzatti,et al.  catalyst deactivation , 2020, Catalysis from A to Z.

[9]  Raymond J. Gorte,et al.  Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons , 2003 .

[10]  Mogens Bjerg Mogensen,et al.  Conversion of Hydrocarbons in Solid Oxide Fuel Cells , 2003 .

[11]  Massimiliano Cimenti,et al.  Thermodynamic analysis of solid oxide fuel cells operated with methanol and ethanol under direct utilization, steam reforming, dry reforming or partial oxidation conditions , 2009 .

[12]  Raymond J. Gorte,et al.  Ceria-Based Anodes for the Direct Oxidation of Methane in Solid Oxide Fuel Cells , 1995 .

[13]  John T. S. Irvine,et al.  A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes , 2006 .

[14]  John T. S. Irvine,et al.  A redox-stable efficient anode for solid-oxide fuel cells , 2003, Nature materials.

[15]  P Aldhous,et al.  Death of the biofuel dream , 2007 .

[16]  Juan Carlos Ruiz-Morales,et al.  On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3−δ as both anode and cathode material with improved microstructure in solid oxide fuel cells , 2006 .

[17]  S. Barnett,et al.  An Octane-Fueled Solid Oxide Fuel Cell , 2005, Science.

[18]  Zongping Shao,et al.  Partial oxidation of dimethyl ether to H2/syngas over supported Pt catalyst , 2008 .

[19]  D. L Trimm,et al.  Catalysts for the control of coking during steam reforming , 1999 .

[20]  John M. Vohs,et al.  High mobility of ceria films on zirconia at moderate temperatures , 2005 .

[21]  Raymond J. Gorte,et al.  Anodes for Direct Oxidation of Dry Hydrocarbons in a Solid‐Oxide Fuel Cell , 2000 .

[22]  R. Mark Ormerod,et al.  Internal Reforming in Solid Oxide Fuel Cells , 1999 .

[23]  Josephine M. Hill,et al.  Effect of anodic polarization on carbon deposition on Ni/YSZ anodes exposed to methane , 2008 .

[24]  Raymond J. Gorte,et al.  Applications of heterogeneous catalysis in the direct oxidation of hydrocarbons in a solid-oxide fuel cell , 2000 .

[25]  Michael D. Gross,et al.  A Strategy for Achieving High-performance with SOFC Ceramic Anodes , 2007 .

[26]  Shiqiang Hui Evaluation of Yttrium-Doped SrTiO₃ as a Solid Oxide Fuel Cell Anode , 2000 .

[27]  J. Vohs,et al.  Role of Hydrocarbon Deposits in the Enhanced Performance of Direct-Oxidation SOFCs , 2003 .

[28]  Tohru Kato,et al.  Imaging of CH4 decomposition around the Ni/YSZ interfaces under anodic polarization , 2005 .

[29]  Zhe Cheng,et al.  A Solid Oxide Fuel Cell Running on H2S ∕ CH4 Fuel Mixtures , 2006 .

[30]  C. H. Bartholomew Carbon Deposition in Steam Reforming and Methanation , 1982 .

[31]  John B. Goodenough,et al.  Synthesis and Characterization of Sr2MgMoO6 − δ An Anode Material for the Solid Oxide Fuel Cell , 2006 .

[32]  S. Turns An Introduction to Combustion: Concepts and Applications , 2000 .

[33]  Hiroshi Mori,et al.  Performance of nickel–scandia-stabilized zirconia cermet anodes for SOFCs in 3% H2O–CH4 , 2004 .

[34]  Hubert A. Gasteiger,et al.  Handbook of fuel cells : fundamentals technology and applications , 2003 .

[35]  F. Baumann,et al.  Ba0.5Sr0.5Co0.8Fe0.2O3−δ thin film microelectrodes investigated by impedance spectroscopy , 2006 .

[36]  Bin Zhu,et al.  Carbon doped MO–SDC material as an SOFC anode , 2007 .

[37]  Sano,et al.  A low-operating-temperature solid oxide fuel cell in hydrocarbon-Air mixtures , 2000, Science.

[38]  Robert J. Kee,et al.  Performance predictions of a tubular SOFC operating on a partially reformed JP-8 surrogate , 2006 .

[39]  A. Petric,et al.  Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells , 2002 .

[40]  George A. Olah,et al.  After Oil and Gas: Methanol Economy , 2004 .

[41]  Katie Randolph,et al.  Hydrocarbon fuel effects in solid-oxide fuel cell operation: an experimental and modeling study of n-hexane pyrolysis. , 2007, Physical chemistry chemical physics : PCCP.

[42]  Scott A. Barnett,et al.  Use of a catalyst layer for propane partial oxidation in solid oxide fuel cells , 2005 .

[43]  Zhe Cheng,et al.  Electrical properties and sulfur tolerance of La0.75Sr0.25Cr1−xMnxO3 under anodic conditions , 2005 .

[44]  Zhigang Zhu,et al.  Development of cathodes for methanol and ethanol fuelled low temperature (300–600 °C) solid oxide fuel cells , 2007 .

[45]  Raymond J. Gorte,et al.  A Study of SOFC Anodes Based on Cu-Ni and Cu-Co Bimetallics in CeO2 ­ YSZ , 2004 .

[46]  Caine M. Finnerty,et al.  Internal reforming of hydrocarbon fuels in tubular solid oxide fuel cells , 2008 .

[47]  W. L. Worrell,et al.  SOFCs for Direct Oxidation of Hydrocarbon Fuels with Samaria-Doped Ceria Electrolyte , 2003 .

[48]  Wei Wang,et al.  GDC-impregnated Ni anodes for direct utilization of methane in solid oxide fuel cells , 2006 .

[49]  Harumi Yokokawa,et al.  Attempt of utilizing liquid fuels with Ni–ScSZ anode in SOFCs , 2004 .

[50]  George A. Olah,et al.  The Methanol Economy , 2003 .

[51]  João A. Labrincha,et al.  Cathode materials for intermediate temperature SOFCs , 2000 .

[52]  Reinhold Hartung,et al.  On a thermodynamic limitation of the water-gas potentiometry using solid electrolyte cells , 1994 .

[53]  Raymond J. Gorte,et al.  Tape Cast Solid-Oxide Fuel Cells for the Direct Oxidation of Hydrocarbons , 2001 .

[54]  Jan Van herle,et al.  Ammonia as a fuel in solid oxide fuel cells , 2003 .

[55]  Kazunari Sasaki,et al.  Direct-Alcohol SOFCs: Current-Voltage Characteristics and Fuel Gas Compositions , 2004 .

[56]  Caine M. Finnerty,et al.  Internal reforming over nickel/zirconia anodes in SOFCS oparating on methane : influence of anode formulation, pre-treatment and operating conditions , 2000 .

[57]  Manoj Pillai,et al.  Fuel-flexible operation of a solid oxide fuel cell with Sr0.8La0.2TiO3 support , 2008 .

[58]  Wang Shaoliang,et al.  Preparation and performance of a Cu–CeO2–ScSZ composite anode for SOFCs running on ethanol fuel , 2007 .

[59]  Raymond J. Gorte,et al.  Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbon , 2002 .

[60]  Nigel Sammes,et al.  Methanol Oxidation over Doped- LaCoO 3 Electrodes in a Solid Oxide Fuel Cell , 1995 .

[61]  John T. S. Irvine,et al.  LSCM–(YSZ–CGO) composites as improved symmetrical electrodes for solid oxide fuel cells , 2007 .

[62]  George A. Olah,et al.  Beyond Oil and Gas: The Methanol Economy , 2005 .

[63]  John T. S. Irvine,et al.  Phase Transition in Perovskite Oxide La0.75Sr0.25Cr0.5Mn0.5 O3-δ Observed by in situ High-Temperature Neutron Powder Diffraction. , 2007 .

[64]  Tohru Kato,et al.  Design of metal/oxide interfaces for the direct introduction of hydrocarbons into SOFCs , 2004 .

[65]  Yann Bultel,et al.  A Solid Oxide Fuel Cell Operating in Gradual Internal Reforming Conditions under Pure Dry Methane , 2008 .

[66]  Suljo Linic,et al.  Promotion of the long-term stability of reforming Ni catalysts by surface alloying , 2007 .

[67]  Peng Zhou,et al.  Innovative solid carbonate-ceria composite electrolyte fuel cells , 2002 .

[68]  Raymond J. Gorte,et al.  Recent developments on anodes for direct fuel utilization in SOFC , 2004 .

[69]  Suttichai Assabumrungrat,et al.  Catalytic steam reforming of dimethyl ether (DME) over high surface area Ce–ZrO2 at SOFC temperature: The possible use of DME in indirect internal reforming operation (IIR-SOFC) , 2007 .

[70]  Robert J. Kee,et al.  Homogeneous kinetics and equilibrium predictions of coking propensity in the anode channels of direct oxidation solid-oxide fuel cells using dry natural gas , 2003 .

[71]  J. O'm. Bockris Fuel cells and fuel batteries : A guide to their research and development. H.A. Liebhafsky and E.J. Cairns, Wiley, New York (1968) $27.50. , 1969 .

[72]  Elton J. Cairns,et al.  Thermodynamics of Hydrocarbon Fuel Cells , 1963 .

[73]  S. A. Barnett,et al.  A direct-methane fuel cell with a ceria-based anode , 1999, Nature.

[74]  Tohru Kato,et al.  Comparison of catalytic activity for CH4 decomposition at the metal/oxide interfaces by isotope-labeling technique , 2004 .

[75]  W. L. Worrell,et al.  A Novel Method for Preparing Anode Cermets for Solid Oxide Fuel Cells , 1999 .

[76]  Stephen J. Harris,et al.  Direct Solid Oxide Fuel Cell Operation Using a Dimethyl Ether/Air Fuel Mixture , 2005 .

[77]  S. Barnett,et al.  Direct operation of solid oxide fuel cells with methane fuel , 2005 .

[78]  Vincent Heuveline,et al.  Performance analysis of a SOFC under direct internal reforming conditions , 2007 .

[79]  Raymond J. Gorte,et al.  Cu-Co Bimetallic Anodes for Direct Utilization of Methane in SOFCs , 2005 .

[80]  Massimiliano Cimenti,et al.  Direct utilization of methanol and ethanol in solid oxide fuel cells using Cu–Co(Ru)/Zr0.35Ce0.65O2−δ anodes , 2010 .

[81]  高橋 武彦,et al.  Science and technology of ceramic fuel cells , 1995 .

[82]  K. Johnson An Update. , 1984, Journal of food protection.

[83]  Anil V. Virkar,et al.  A High Performance, Anode-Supported Solid Oxide Fuel Cell Operating on Direct Alcohol. , 2001 .

[84]  J. R. Rostrup-Nielsen Industrial Catalysis, the Science and the Challenge. Conversion of Fossil Fuels. , 2010 .

[85]  W. L. Worrell,et al.  Cu-Ni Cermet Anodes for Direct Oxidation of Methane in Solid-Oxide Fuel Cells , 2002 .

[86]  Anthony M. Dean,et al.  Importance of gas-phase kinetics within the anode channel of a solid-oxide fuel cell , 2004 .

[87]  Ian S. Metcalfe,et al.  Reactivity of LSCF perovskites , 2002 .

[88]  Hae Jin Hwang,et al.  Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) and La0.6Ba0.4Co0.2Fe0.8O3−δ (LBCF) cathodes prepared by combined citrate-EDTA method for IT-SOFCs , 2006 .

[89]  W. L. Worrell,et al.  A Comparison of Cu-Ceria-SDC and Au-Ceria-SDC Composites for SOFC Anodes , 2003 .

[90]  Michael D. Gross,et al.  A study of thermal stability and methane tolerance of Cu-based SOFC anodes with electrodeposited Co , 2007 .

[91]  Christophe Coutanceau,et al.  Development of anode catalysts for a direct ethanol fuel cell , 2004 .

[92]  Mogens Bjerg Mogensen,et al.  High-temperature conversion of methane on a composite gadolinia-doped ceria–gold electrode , 1999 .

[93]  John B Goodenough,et al.  Double Perovskites as Anode Materials for Solid-Oxide Fuel Cells , 2006, Science.

[94]  Kazunari Sasaki,et al.  Equilibria in Fuel Cell Gases II. The C-H-O Ternary Diagrams , 2003 .

[95]  Anil V. Virkar,et al.  A High Performance, Anode-Supported Solid Oxide Fuel Cell Operating on Direct Alcohol , 2001 .

[96]  Ching-ju Wen,et al.  Carbon deposition behaviour on Ni–ScSZ anodes for internal reforming solid oxide fuel cells , 2004 .

[97]  O. Deutschmann,et al.  Methane reforming kinetics within a Ni–YSZ SOFC anode support , 2005 .

[98]  David Chadwick,et al.  Methanol synthesis from CO2/H2 over Pd promoted Cu/ZnO/Al2O3 catalysts , 1998 .

[99]  Raymond J. Gorte,et al.  Effect of Precious-Metal Dopants on SOFC Anodes for Direct Utilization of Hydrocarbons , 2003 .

[100]  Anthony M. Dean,et al.  Comparison of conversion and deposit formation of ethanol and butane under SOFC conditions , 2006 .

[101]  Meilin Liu,et al.  Pre-reforming of propane for low-temperature SOFCs , 2004 .

[102]  R. Mark Ormerod Solid oxide fuel cells. , 2003, Chemical Society reviews.

[103]  D. Leung,et al.  A review on reforming bio-ethanol for hydrogen production , 2007 .

[104]  Manoj Pillai,et al.  Electrochemical Partial Oxidation of Methane in Solid Oxide Fuel Cells: Effect of Anode Reforming Activity , 2008 .

[105]  Randolph Norris Shreve,et al.  Shreve's Chemical process industries , 1984 .

[106]  S. Jiang,et al.  A review of anode materials development in solid oxide fuel cells , 2004 .

[107]  Raymond J. Gorte,et al.  Characterization of YSZ-YST Composites for SOFC Anodes , 2004 .

[108]  Takashi Hibino,et al.  Ru-catalyzed anode materials for direct hydrocarbon SOFCs , 2003 .

[109]  K. Sasaki,et al.  Equilibria in Fuel Cell Gases I. Equilibrium Compositions and Reforming Conditions , 2003 .

[110]  Michael D. Gross,et al.  An Examination of SOFC Anode Functional Layers Based on Ceria in YSZ , 2007 .

[111]  Seungdoo Park,et al.  Direct Oxidation of Hydrocarbons in a Solid Oxide Fuel Cell: I. Methane Oxidation , 1999 .

[112]  John B. Goodenough,et al.  Alternative anode materials for solid oxide fuel cells , 2007 .

[113]  Caine M. Finnerty,et al.  Study of the catalysis and surface chemistry occurring at nickel/zirconia anodes in solid oxide fuel cells running on natural gas , 1999 .

[114]  Stylianos G. Neophytides,et al.  High Tolerant to Carbon Deposition Ni-based Electrodes under Internal Steam Reforming Conditions , 2007 .

[115]  R. Mark Ormerod,et al.  Development of anodes for direct electrocatalytic oxidation of methane in solid oxide fuel cells , 2003 .

[116]  R. Peters,et al.  Internal reforming of methane in solid oxide fuel cell systems , 2002 .

[117]  Siwen Li,et al.  Sulfur-Tolerant Materials for the Hydrogen Sulfide SOFC , 2004 .

[118]  Ryan Clemmer,et al.  Effect of hydrogen on carbon formation on Ni/YSZ composites exposed to methane , 2008 .

[119]  Kazunari Sasaki,et al.  Equilibria in fuel cell gases , 2003 .

[120]  Scott A. Barnett,et al.  Operation of anode-supported solid oxide fuel cells on methane and natural gas , 2003 .

[121]  Carl L. Yaws The Yaws Handbook of Thermodynamic Properties for Hydrocarbons and Chemicals , 2005 .

[122]  Massimiliano Cimenti,et al.  Importance of pyrolysis and catalytic decomposition for the direct utilization of methanol in solid oxide fuel cells , 2010 .

[123]  Michael D. Gross,et al.  Enhanced Thermal Stability of Cu-Based SOFC Anodes by Electrodeposition of Cr , 2006 .

[124]  Angelika Heinzel,et al.  Hydrogen generation from biogenic and fossil fuels by autothermal reforming , 2000 .

[125]  Brant A. Peppley,et al.  Methanol–steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model , 1999 .

[126]  Roberta J. Nichols,et al.  The Methanol Story: A Sustainable Fuel for the Future , 2003 .

[127]  Y. Matsuzaki,et al.  The Poisoning Effect of Sulfur-Containing Impurity Gas on a SOFC Anode: Part I , 2000 .

[128]  J. Kwok,et al.  GDC-Impregnated ( La0.75Sr0.25 ) ( Cr0.5Mn0.5 ) O3 Anodes for Direct Utilization of Methane in Solid Oxide Fuel Cells , 2006 .

[129]  Raymond J. Gorte,et al.  Direct oxidation of hydrocarbons in a solid-oxide fuel cell , 2000, Nature.

[130]  David L. Trimm,et al.  Coke formation and minimisation during steam reforming reactions , 1997 .

[131]  David Chadwick,et al.  Achieving Autothermal Operation in Internally Reformed Solid Oxide Fuel Cells : Experimental Studies , 2007 .

[132]  Ellen Ivers-Tiffée,et al.  Oxidation of H2, CO and methane in SOFCs with Ni/YSZ-cermet anodes , 2002 .

[133]  Wang Shaoliang,et al.  Preparation and performance characterization of the Fe–Ni/ScSZ cermet anode for oxidation of ethanol fuel in SOFCs , 2007 .

[134]  R. J. Nichols,et al.  1993 Soichiro Honda Lecture: The Challenges of Change in the Auto Industry: Why Alternative Fuels? , 1994 .

[135]  Jens R. Rostrup-Nielsen Conversion of hydrocarbons and alcohols for fuel cells , 2001 .

[136]  Zhe Cheng,et al.  A solid oxide fuel cell operating on hydrogen sulfide (H2S) and sulfur-containing fuels , 2004 .

[137]  C. H. Bartholomew Mechanisms of catalyst deactivation , 2001 .

[138]  Wang Shaoliang,et al.  Performance of La0.75Sr0.25Cr0.5Mn0.5O3−δ perovskite-structure anode material at lanthanum gallate electrolyte for IT-SOFC running on ethanol fuel , 2007 .

[139]  Liwu Lin,et al.  A Direct Ammonia Tubular Solid Oxide Fuel Cell , 2007 .

[140]  Scott A. Barnett,et al.  Effect of fuel composition on the performance of ceramic-based solid oxide fuel cell anodes , 2005 .

[141]  J. Rostrup-Nielsen,et al.  Fuels and Energy for the Future: The Role of Catalysis , 2004 .

[142]  Nigel P. Brandon,et al.  Methanol as a direct fuel in intermediate temperature (500–600∘C) solid oxide fuel cells with copper based anodes , 2005 .

[143]  S. Singhal,et al.  Advanced anodes for high-temperature fuel cells , 2004, Nature materials.

[144]  Taeyoon Kim,et al.  Deactivation of ceria-based SOFC anodes in methanol , 2007 .

[145]  R. Gorte,et al.  Direct hydrocarbon solid oxide fuel cells. , 2004, Chemical reviews.

[146]  Michael D. Gross,et al.  Electrodeposition of Cu into a Highly Porous Ni ∕ YSZ Cermet , 2006 .

[147]  Andrew Murray,et al.  Cell cycle: A snip separates sisters , 1999, Nature.

[148]  S. Singhal Solid oxide fuel cells for stationary, mobile, and military applications , 2002 .

[149]  R J Gorte,et al.  Direct oxidation of sulfur-containing fuels in a solid oxide fuel cell. , 2001, Chemical communications.

[150]  Ryuji Kikuchi,et al.  Fuel flexibility in power generation by solid oxide fuel cells , 2002 .

[151]  Stephen J. Harris,et al.  Solid Oxide Fuel Cells Utilizing Dimethyl Ether Fuel , 2002 .

[152]  Jens R. Rostrup-Nielsen,et al.  Hydrogen and Synthesis Gas by Steam‐ and CO2 Reforming , 2003 .

[153]  John T. S. Irvine,et al.  Methane Oxidation at Redox Stable Fuel Cell Electrode La0.75Sr0.25Cr0.5Mn0.5O3-δ , 2006 .

[154]  R. Zabransky,et al.  Internal reforming development for solid oxide fuel cells , 1990 .

[155]  U. Stimming,et al.  Recent anode advances in solid oxide fuel cells , 2007 .

[156]  Scott A. Barnett,et al.  Operation of anode-supported solid oxide fuel cells on propane–air fuel mixtures , 2004 .

[157]  Dimitris Sarantaridis,et al.  Redox Cycling of Ni‐based Solid Oxide Fuel Cell Anodes: A Review , 2008 .

[158]  Karl V. Kordesch,et al.  Fuel cells and their applications , 1996 .

[159]  S. Singhal,et al.  Polarization Effects in Intermediate Temperature, Anode‐Supported Solid Oxide Fuel Cells , 1999 .

[160]  K. Kendall,et al.  High temperature solid oxide fuel cells : fundamentals, design and applicatons , 2003 .

[161]  Zhe Cheng,et al.  Electrical properties and sulfur tolerance of La 0 . 75 Sr 0 . 25 Cr 1 x Mn x O 3 under anodic conditions , 2005 .

[162]  Juan Carlos Ruiz-Morales,et al.  Fuel cell studies of perovskite-type materials for IT-SOFC , 2006 .

[163]  Massimiliano Cimenti,et al.  Direct utilization of ethanol on ceria‐based anodes for solid oxide fuel cells , 2009 .

[164]  Jeffrey W. Fergus,et al.  Oxide anode materials for solid oxide fuel cells , 2006 .

[165]  문동주 Hydrogen Production by Catalytic Reforming of Gaseous Hydrocarbons (Methane & LPG) , 2008 .

[166]  John B. Goodenough,et al.  Electrochemical performance of La-doped Sr2MgMoO6−δ in natural gas , 2007 .

[167]  Raymond J. Gorte,et al.  Direct Oxidation of Liquid Fuels in a Solid Oxide Fuel Cell , 2001 .

[168]  Brant A. Peppley,et al.  The Steam Reforming of Methanol: Mechanism and Kinetics Compared to the Methanol Synthesis Process , 1994 .

[169]  Michael D. Gross,et al.  Recent progress in SOFC anodes for direct utilization of hydrocarbons , 2007 .

[170]  Seetharama C. Deevi,et al.  A review on the status of anode materials for solid oxide fuel cells , 2003 .

[171]  J. Vohs,et al.  An Examination of Lanthanide Additives on the Performance of Cu-YSZ Cermet Anodes , 2002 .

[172]  Brant A. Peppley,et al.  Methanol–steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network , 1999 .

[173]  S. D. Souza Thin-film solid oxide fuel cell with high performance at low-temperature , 1997 .

[174]  R. P. Bell,et al.  Modern Electrochemistry , 1966, Nature.

[175]  Scott A. Barnett,et al.  Thin Yttrium‐Stabilized Zirconia Electrolyte Solid Oxide Fuel Cells by Centrifugal Casting , 2004 .

[176]  Jens R. Rostrup-Nielsen,et al.  Large-Scale Hydrogen Production , 2002 .