Reference data set of volcanic ash physicochemical and optical properties

Uncertainty in the physicochemical and optical properties of volcanic ash particles creates errors in the detection and modeling of volcanic ash clouds and in quantification of their potential impacts. In this study, we provide a dataset that describes the physicochemical and optical properties of a representative selection of volcanic ash samples from nine different volcanic eruptions covering a wide range of silica contents (50 - 80 wt. % SiO2). We measured and calculated parameters describing the physical (size distribution, complex shape, and dense-rock equivalent mass density), chemical (bulk and surface composition) and optical (complex refractive index from ultra-violet to near-infrared wavelengths) properties of the volcanic ash and classified the samples according to their SiO2 and total alkali contents into the common igneous rock types Basalt to Rhyolite. We found that the mass density ranges between ρ = 2.49 and 2.98 g/cm3 for rhyolitic to basaltic ash types, and that the particle shape varies with changing particle size (d < 100 μm). The complex refractive indices in the wavelength range between λ = 300 nm and 1500 nm depends systematically on the composition of the samples. The real part values vary from n = 1.38 to 1.66 depending on ash type and wavelength and the imaginary part values from k = 0.00027 to 0.00268. We place our results into the context of existing data, and thus provide a comprehensive dataset that can be used for future and historic eruptions, when only basic information about the magma type producing the ash is known.

[1]  W. Rose,et al.  Shape and surface area measurements using scanning electron microscope stereo-pair images of volcanic ash particles , 2010 .

[2]  Hester Volten,et al.  Scattering matrices of volcanic ash particles of Mount St. Helens, Redoubt, and Mount Spurr Volcanoes , 2004 .

[3]  A. Sarna‐Wojcicki,et al.  Maps showing distribution, thickness, and mass of late Pleistocene and Holocene tephra from major volcanoes in the Pacific Northwest of the United States; a preliminary assessment of hazards from volcanic ejecta to nuclear reactors in the Pacific Northwest , 1983 .

[4]  Gang Zhang,et al.  Quantitative assessment on the cloning efficiencies of lentiviral transfer vectors with a unique clone site , 2012, Scientific Reports.

[5]  P. Delmelle,et al.  Volcanic and atmospheric controls on ash iron solubility: A review , 2012 .

[6]  L. Maitre The Chemical Variability of some Common Igneous Rocks , 1976 .

[7]  David J. Schneider,et al.  Observations of Volcanic Clouds in Their First Few Days of Atmospheric Residence: The 1992 Eruptions of Crater Peak, Mount Spurr Volcano, Alaska , 2001, The Journal of Geology.

[8]  G. Zaccanti,et al.  Deviation from the Lambert-Beer law in the transmittance of a light beam through diffusing media: experimental results , 1988 .

[9]  Grant Heiken,et al.  Morphology and Petrography of Volcanic Ashes , 1972 .

[10]  A. Streckeisen,et al.  The IUGS systematics of igneous rocks , 1991, Journal of the Geological Society.

[11]  H. Wadell Volume, Shape, and Roundness of Rock Particles , 1932, The Journal of Geology.

[12]  E. Patterson,et al.  Atmospheric extinction between 0.55 microm and 10.6 microm due to soil-derived aerosols. , 1977, Applied optics.

[13]  Arnau Folch,et al.  A review of tephra transport and dispersal models: Evolution, current status, and future perspectives , 2012 .

[14]  Arlin J. Krueger,et al.  Ultraviolet optical model of volcanic clouds for remote sensing of ash and sulfur dioxide , 1997 .

[15]  C. Bonadonna,et al.  Tephra stratigraphy and eruptive volume of the May, 2008, Chaitén eruption, Chile , 2011 .

[16]  C. Bonadonna,et al.  Atmospheric and Environmental Impacts of Volcanic Particulates , 2010 .

[17]  T. Thordarson,et al.  Ash from the Eyjafjallajökull eruption (Iceland): Fragmentation processes and aerodynamic behavior , 2012 .

[18]  E. Patterson Measurements of the imaginary part of the refractive index between 300 and 700 nanometers for mount st. Helens ash. , 1981, Science.

[19]  Lorraine A. Remer,et al.  Optical, microphysical and compositional properties of the Eyjafjallajökull volcanic ash , 2014 .

[20]  H. Gonnermann,et al.  Explosive volcanism may not be an inevitable consequence of magma fragmentation , 2003, Nature.

[21]  C. Emmel,et al.  Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: particle chemistry, shape, mixing state and complex refractive index , 2011 .

[22]  Alison C Rust,et al.  Optimising shape analysis to quantify volcanic ash morphology , 2015 .

[23]  C. Bonadonna,et al.  Complex dynamics of small-moderate volcanic events: the example of the 2011 rhyolitic Cordón Caulle eruption, Chile , 2015, Bulletin of Volcanology.

[24]  D. Dingwell,et al.  Rapid ascent of rhyolitic magma at Chaitén volcano, Chile , 2009, Nature.

[25]  Thorvaldur Thordarson,et al.  Big grains go far: understanding the discrepancy between tephrochronology and satellite infrared measurements of volcanic ash , 2015 .

[26]  C. Bonadonna,et al.  On the drag of freely falling non-spherical particles , 2016, 1810.08787.

[27]  John Gustav Delly,et al.  Polarized light microscopy , 1978 .

[28]  A. Stohl,et al.  Natural iron fertilization by the Eyjafjallajökull volcanic eruption , 2013 .

[29]  R. S. J. Sparks,et al.  Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number , 1998 .

[30]  Kerstin Stebel,et al.  Determination of time- and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajökull eruption , 2011 .

[31]  David J. Schneider,et al.  OBSERVATIONS OF THE 1989-90 REDOUBT VOLCANO ERUPTION CLOUDS USING AVHRR SATELLITE IMAGERY , 2005 .

[32]  James D. L. White,et al.  Primary volcaniclastic rocks , 2006 .

[33]  T. Casadevall,et al.  The 1989–1990 eruption of Redoubt Volcano, Alaska: impacts on aircraft operations , 1994 .

[34]  D. Dingwell,et al.  Volcanic ash: A primary agent in the Earth system , 2012 .

[35]  C. Bonadonna,et al.  Aerodynamics of Volcanic Particles: Characterization of Size, Shape, and Settling Velocity , 2016 .

[36]  S. Gíslason,et al.  Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous environments , 2008 .

[37]  Y. Dufrêne,et al.  Gas/aerosol-ash interaction in volcanic plumes: New insights from surface analyses of fine ash particles , 2007 .

[38]  An inclined Vulcanian explosion and associated products , 2015, Journal of the Geological Society.

[39]  A. Robock Volcanic eruptions and climate , 2000 .

[40]  Costanza Bonadonna,et al.  Total grain-size distribution and volume of tephra-fall deposits , 2005 .

[41]  T. Wilson,et al.  Volcanic ash impacts on critical infrastructure , 2012 .

[42]  N. A. Krotkov,et al.  Ultraviolet Satellite Measurements of Volcanic Ash , 2016 .

[43]  C. Neal,et al.  Areal distribution, thickness, mass, volume, and grain size of tephra-fall deposits from the 1992 eruptions of Crater Peak vent, Mt. Spurr Volcano, Alaska , 2001 .

[44]  G. Ernst,et al.  Ice nucleation and overseeding of ice in volcanic clouds , 2008 .

[45]  Andrew Tupper,et al.  Aviation hazards from volcanoes: the state of the science , 2009 .

[46]  C. Bonadonna,et al.  On the characterization of size and shape of irregular particles , 2015 .

[47]  Peter J. Baxter,et al.  Chapter 22 Evaluating the respiratory health risks of volcanic ash at the eruption of the Soufrière Hills Volcano, Montserrat, 1995 to 2010 , 2014 .

[48]  P. Baxter,et al.  The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation , 2006 .

[49]  R. Sparks,et al.  The dynamics of bubble formation and growth in magmas , 1978 .

[50]  A. Stohl,et al.  High levels of particulate matter in Iceland due to direct ash emissions by the Eyjafjallajökull eruption and resuspension of deposited ash , 2012 .

[51]  Arlin J. Krueger,et al.  Comparison of TOMS and AVHRR volcanic ash retrievals from the August 1992 eruption of Mt. Spurr , 1999 .

[52]  Andreas Stohl,et al.  Aerosol radiative forcing from the 2010 Eyjafjallajökull volcanic eruptions , 2014 .

[53]  P. Richet,et al.  Silicate glasses and melts : properties and structure , 2005 .

[54]  R. Engelmann,et al.  Volcanic ash over Scandinavia originating from the Grímsvötn eruptions in May 2011 , 2012 .

[55]  C. Timmreck Modeling the climatic effects of large explosive volcanic eruptions , 2012 .

[56]  R. Lange,et al.  Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2 liquids: New measurements and derived partial molar properties , 1987 .

[57]  Kristopher M. Bedka,et al.  In situ and space‐based observations of the Kelud volcanic plume: The persistence of ash in the lower stratosphere , 2016, Journal of geophysical research. Atmospheres : JGR.

[58]  Lionel Wilson,et al.  The influence of shape on the atmospheric settling velocity of volcanic ash particles , 1979 .

[59]  Arnau Folch,et al.  A three-dimensional Eulerian model for transport and deposition of volcanic ashes , 2006 .

[60]  Lieven Clarisse,et al.  Infrared Sounding of Volcanic Ash , 2016 .

[61]  F. Volz,et al.  Infrared optical constants of ammonium sulfate, sahara dust, volcanic pumice, and flyash. , 1973, Applied optics.

[62]  Maurizio Ripepe,et al.  Tephra sedimentation during the 2010 Eyjafjallajökull eruption (Iceland) from deposit, radar, and satellite observations , 2011 .

[63]  Owen B. Toon,et al.  Optical properties of some terrestrial rocks and glasses. , 1973 .

[64]  C. O'Dowd,et al.  Characterization of volcanic ash from the 2011 Grímsvötn eruption by means of single-particle analysis , 2013 .

[65]  S. Carn,et al.  The sulfur budget of the 2011 Grímsvötn eruption, Iceland , 2013 .

[66]  Thorvaldur Thordarson,et al.  Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland , 2012, Scientific Reports.

[67]  William I. Rose,et al.  Quantitative shape measurements of distal volcanic ash , 2003 .

[68]  P. Croot,et al.  The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: a review , 2009 .

[69]  R. Sulpizio,et al.  A systematic investigation on the aerodynamics of ash particles , 2011 .

[70]  Jonas Eliasson,et al.  Airborne in-situ investigations of the Eyjafjallajökull volcanic ash plume on Iceland and over north-western Germany with light aircrafts and optical particle counters , 2012 .

[71]  W. Rose,et al.  Sedimentological constraints on hydrometeor-enhanced particle deposition: 1992 Eruptions of Crater Peak, Alaska , 2009 .

[72]  J. Pennec,et al.  Sigmoidal particle density distribution in a subplinian scoria fall deposit , 2012, Bulletin of Volcanology.

[73]  A. Durant RESEARCH FOCUS: Toward a realistic formulation of fine-ash lifetime in volcanic clouds , 2015 .

[74]  Terry E.C. Keith,et al.  The 1992 eruptions of Crater Peak vent, Mount Spurr Volcano, Alaska , 1995 .

[75]  E. Patterson,et al.  Optical properties of the ash from El Chichon volcano , 1983 .

[76]  William I. Rose,et al.  Retrieval of sizes and total masses of particles in volcanic clouds using AVHRR bands 4 and 5 , 1994 .

[77]  A. Rust,et al.  Introduction: Part 2: Volcanic Ash: Generation and Spatial Variations , 2016 .

[78]  E. Ciliberto,et al.  X‐ray photoelectron spectroscopy of Mt. Etna volcanic ashes , 2014 .

[79]  B. N. Church,et al.  Calculation of the refractive index of silicate glasses from chemical composition , 1980 .

[80]  Martin Riese,et al.  Lidar observation and model simulation of a volcanic-ash-induced cirrus cloud during the Eyjafjallajökull eruption , 2012 .

[81]  J. Nobbs Kubelka—Munk Theory and the Prediction of Reflectance , 2008 .

[82]  William I. Rose,et al.  Measurements of the complex dielectric constant of volcanic ash from 4 to 19 GHz , 1996 .

[83]  William I. Rose,et al.  Fine ash content of explosive eruptions , 2009 .

[84]  Arlin J. Krueger,et al.  Effect of particle non-sphericity on satellite monitoring of drifting volcanic ash clouds , 1999 .

[85]  E. Cox A method of assigning numerical and percentage values to the degree of roundness of sand grains , 1927 .

[86]  C. Bonadonna,et al.  Dedicated vertical wind tunnel for the study of sedimentation of non-spherical particles. , 2013, The Review of scientific instruments.

[87]  Arve Kylling,et al.  Volcanic ash infrared signature: porous non-spherical ash particle shapes compared to homogeneous spherical ash particles , 2014 .

[88]  J. Blundy,et al.  Ascent-driven crystallisation of dacite magmas at Mount St Helens, 1980–1986 , 2001, Contributions to Mineralogy and Petrology.

[89]  T. P. Miller,et al.  Geochemistry of the 1989-1990 eruption of redoubt volcano: Part I. Whole-rock major- and trace-element chemistry , 1994 .

[90]  Marianne Guffanti,et al.  Encounters of aircraft with volcanic ash clouds; A compilation of known incidents, 1953-2009 , 2010 .

[91]  K. Masuda,et al.  Estimation of the refractive index of volcanic ash from satellite infrared sounder data , 2016 .

[92]  T. Hassenkam,et al.  Characterization of Eyjafjallajökull volcanic ash particles and a protocol for rapid risk assessment , 2011, Proceedings of the National Academy of Sciences.

[93]  C. Bonadonna,et al.  Timing and nature of volcanic particle clusters based on field and numerical investigations , 2016 .

[94]  Daniel M. Peters,et al.  Measurements of the complex refractive index of volcanic ash at 450, 546.7, and 650 nm , 2015 .

[95]  Daniel M. Peters,et al.  Measuring volcanic plume and ash properties from space , 2013 .

[96]  T. Thordarson,et al.  Remobilization of silicic intrusion by mafic magmas during the 2010 Eyjafjallajökull eruption , 2011 .

[97]  Costanza Bonadonna,et al.  Sedimentation from strong volcanic plumes , 2003 .

[98]  J. Pennec,et al.  Towards fast and routine analyses of volcanic ash morphometry for eruption surveillance applications , 2015 .

[99]  David J. Schneider,et al.  Tracking of 1992 eruption clouds from Crater Peak vent of Mount Spurr Volcano, Alaska, using AVHRR , 1995 .