Scalable Parallel Sparse Factorization with Left-Right Looking Strategy on Shared Memory Multoprocessors

An efficient sparse LU factorization algorithm on popular shared memory multiprocessors is presented. Interprocess communication is critically important on these architectures—the algorithm introduces O(n) synchronization events only. No global barrier is used and a completely asynchronous scheduling scheme is one central point of the implementation. The algorithm aims at optimizing the single node performance and minimizing the communication overhead. It has been successfully tested on SUN Enterprise, DEC AlphaServer, SGI Origin 2000, Cray T90, J90, and NEC SX-4 parallel computers, delivering up to 2.3 GFlop/s on an eight processor DEC AlphaServer for medium-size semiconductor device simulations and structural engineering problems.