Probabilistic Aspects in Spoken Document Retrieval

Accessing information in multimedia databases encompasses a wide range of applications in which spoken document retrieval (SDR) plays an important role. In SDR, a set of automatically transcribed speech documents constitutes the files for retrieval, to which a user may address a request in natural language. This paper deals with two probabilistic aspects in SDR. The first part investigates the effect of recognition errors on retrieval performance and inquires the question of why recognition errors have only a little effect on the retrieval performance. In the second part, we present a new probabilistic approach to SDR that is based on interpolations between document representations. Experiments performed on the TREC-7 and TREC-8 SDR task show comparable or even better results for the new proposed method than other advanced heuristic and probabilistic retrieval metrics.

[1]  Stephen E. Robertson,et al.  Okapi at TREC-3 , 1994, TREC.

[2]  Ellen M. Voorhees,et al.  The TREC Spoken Document Retrieval Track: A Success Story , 2000, TREC.

[3]  Martin F. Porter,et al.  An algorithm for suffix stripping , 1997, Program.

[4]  Amit Srivastava,et al.  Integrated technologies for indexing spoken language , 2000, CACM.

[5]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[6]  Puming Zhan,et al.  Dragon systems' 1998 broadcast news transcription system , 1999, EUROSPEECH.

[7]  Richard M. Schwartz,et al.  BBN at TREC7: Using Hidden Markov Models for Information Retrieval , 1998, TREC.

[8]  W. Bruce Croft,et al.  Improving the effectiveness of information retrieval with local context analysis , 2000, TOIS.

[9]  Jean-Luc Gauvain,et al.  The LIMSI SDR System for TREC-8 , 1999, TREC.

[10]  Hermann Ney,et al.  Improved lexical tree search for large vocabulary speech recognition , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[11]  Walter Liggett,et al.  Insights From the Broadcast News Benchmark Tests , 1998 .

[12]  David G. Stork,et al.  Pattern Classification , 1973 .

[13]  John D. Lafferty,et al.  Information retrieval as statistical translation , 1999, SIGIR '99.

[14]  Puming Zhan,et al.  Dragon Systems' 1998 Broadcast News Transcription Systemfor Mandarin , 1999 .

[15]  Ellen M. Voorhees,et al.  1998 TREC-7 Spoken Document Retrieval Track Overview and Results , 1998 .

[16]  Yoram Singer,et al.  Boosting and Rocchio applied to text filtering , 1998, SIGIR '98.

[17]  Wolfgang Wahlster,et al.  Verbmobil: Foundations of Speech-to-Speech Translation , 2000, Artificial Intelligence.

[18]  Robert L. Mercer,et al.  The Mathematics of Statistical Machine Translation: Parameter Estimation , 1993, CL.

[19]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[20]  Yoram Singer,et al.  Context-sensitive learning methods for text categorization , 1996, SIGIR '96.

[21]  Chris Buckley,et al.  A probabilistic learning approach for document indexing , 1991, TOIS.

[22]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[23]  Julia Hirschberg,et al.  AN OVERVIEW OF THE AT&T SPOKEN DOCUMENT RETRIEVAL , 1998 .

[24]  Hermann Ney,et al.  Fast Search for Large Vocabulary Speech Recognition , 2000 .

[25]  Amit Singhal,et al.  AT&T at TREC-7 , 1998, TREC.

[26]  Stephen E. Robertson,et al.  Okapi at TREC-4 , 1995, TREC.

[27]  Karen Sparck Jones,et al.  Spoken Document Retrieval for TREC-8 at Cambridge University , 1998, TREC.