The FoxO–BNIP3 axis exerts a unique regulation of mTORC1 and cell survival under energy stress

[1]  Sang Gyun Kim,et al.  Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. , 2013, Molecular cell.

[2]  O. Kirak,et al.  Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival , 2012, Nature.

[3]  H. Düssmann,et al.  Two-step activation of FOXO3 by AMPK generates a coherent feed-forward loop determining excitotoxic cell fate , 2012, Cell Death and Differentiation.

[4]  D. Sabatini,et al.  mTOR Signaling in Growth Control and Disease , 2012, Cell.

[5]  D. Hardie,et al.  AMPK: a nutrient and energy sensor that maintains energy homeostasis , 2012, Nature Reviews Molecular Cell Biology.

[6]  Lara J. Monteiro,et al.  Phosphorylation of FOXO3a on Ser-7 by p38 Promotes Its Nuclear Localization in Response to Doxorubicin* , 2011, The Journal of Biological Chemistry.

[7]  R. Shaw,et al.  The AMPK signalling pathway coordinates cell growth, autophagy and metabolism , 2011, Nature Cell Biology.

[8]  Jiahuai Han,et al.  Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy depletion-induced suppression of mTORC1 , 2010, Nature Cell Biology.

[9]  Gerald C. Chu,et al.  FoxOs enforce a progression checkpoint to constrain mTORC1-activated renal tumorigenesis. , 2010, Cancer cell.

[10]  L. Chin,et al.  LKB1 regulates quiescence and metabolic homeostasis of hematopoietic stem cells , 2010, Nature.

[11]  Sang Gyun Kim,et al.  Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply. , 2010, Molecular cell.

[12]  N. Hay,et al.  FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor. , 2010, Developmental cell.

[13]  Shikha Khatri,et al.  FOXO3a Regulates Glycolysis via Transcriptional Control of Tumor Suppressor TSC1* , 2010, The Journal of Biological Chemistry.

[14]  R. Shaw,et al.  The LKB1–AMPK pathway: metabolism and growth control in tumour suppression , 2009, Nature Reviews Cancer.

[15]  Ji Zhang,et al.  Role of BNIP3 and NIX in cell death, autophagy, and mitophagy , 2009, Cell Death and Differentiation.

[16]  J. Blenis,et al.  Molecular mechanisms of mTOR-mediated translational control , 2009, Nature Reviews Molecular Cell Biology.

[17]  B. Rini,et al.  Renal cell carcinoma , 2009, The Lancet.

[18]  Russell G. Jones,et al.  Tumor suppressors and cell metabolism: a recipe for cancer growth. , 2009, Genes & development.

[19]  S. Gibson,et al.  The role of Bcl-2 family member BNIP3 in cell death and disease: NIPping at the heels of cell death , 2009, Cell Death and Differentiation.

[20]  David A. Williams,et al.  mTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization , 2008, Proceedings of the National Academy of Sciences.

[21]  S. Gibson,et al.  BNIP3 subfamily BH3-only proteins: mitochondrial stress sensors in normal and pathological functions , 2008, Oncogene.

[22]  B. Manning,et al.  The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. , 2008, The Biochemical journal.

[23]  B. Turk,et al.  AMPK phosphorylation of raptor mediates a metabolic checkpoint. , 2008, Molecular cell.

[24]  A. Brunet,et al.  The FoxO code , 2008, Oncogene.

[25]  M. You,et al.  Bnip3 Mediates the Hypoxia-induced Inhibition on Mammalian Target of Rapamycin by Interacting with Rheb* , 2007, Journal of Biological Chemistry.

[26]  A. Goldberg,et al.  FoxO3 controls autophagy in skeletal muscle in vivo. , 2007, Cell metabolism.

[27]  S. Gygi,et al.  The Energy Sensor AMP-activated Protein Kinase Directly Regulates the Mammalian FOXO3 Transcription Factor* , 2007, Journal of Biological Chemistry.

[28]  G. Thomas,et al.  mTOR Complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer. , 2007, Trends in molecular medicine.

[29]  B. Burgering,et al.  Stressing the role of FoxO proteins in lifespan and disease , 2007, Nature Reviews Molecular Cell Biology.

[30]  Yonghong Xiao,et al.  FoxOs Are Lineage-Restricted Redundant Tumor Suppressors and Regulate Endothelial Cell Homeostasis , 2007, Cell.

[31]  B. Viollet,et al.  5′-AMP-Activated Protein Kinase (AMPK) Is Induced by Low-Oxygen and Glucose Deprivation Conditions Found in Solid-Tumor Microenvironments , 2006, Molecular and Cellular Biology.

[32]  L. Cantley,et al.  Ras, PI(3)K and mTOR signalling controls tumour cell growth , 2006, Nature.

[33]  M. Hall,et al.  TOR Signaling in Growth and Metabolism , 2006, Cell.

[34]  N. Sonenberg,et al.  Akt Activates the Mammalian Target of Rapamycin by Regulating Cellular ATP Level and AMPK Activity* , 2005, Journal of Biological Chemistry.

[35]  K. Guan,et al.  Identification of FIP200 interaction with the TSC1–TSC2 complex and its role in regulation of cell size control , 2005, The Journal of cell biology.

[36]  W Marston Linehan,et al.  Focus on kidney cancer. , 2004, Cancer cell.

[37]  R. DePinho,et al.  The LKB1 tumor suppressor negatively regulates mTOR signaling. , 2004, Cancer cell.

[38]  R. DePinho,et al.  Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. , 2004, Genes & development.

[39]  D. Accili,et al.  FoxOs at the Crossroads of Cellular Metabolism, Differentiation, and Transformation , 2004, Cell.

[40]  Lewis C Cantley,et al.  The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[41]  K. Inoki,et al.  TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival , 2003, Cell.

[42]  Ronald A. DePinho,et al.  Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation , 2002, Nature.

[43]  Hongbing Zhang,et al.  A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. , 2002, Human molecular genetics.

[44]  Tetsuo Noda,et al.  A germ-line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[45]  H. Onda,et al.  Tsc2(+/-) mice develop tumors in multiple sites that express gelsolin and are influenced by genetic background. , 1999, The Journal of clinical investigation.

[46]  K. Inoki,et al.  TSC2: filling the GAP in the mTOR signaling pathway. , 2004, Trends in biochemical sciences.