Composition-Dependent Optical Band Bowing, Vibrational, and Photochemical Behavior of Aqueous Glutathione-Capped (Cu, Ag)–In–S Quantum Dots

A mild aqueous synthesis of colloidal 2–4 nm (Cu, Ag)–In–S (CAIS) quantum dots (QDs) stabilized by surface metal complexes with glutathione was introduced. Linear variations of the interplanar dist...

[1]  D. Zahn,et al.  Phonon Spectra of Strongly Luminescent Nonstoichiometric Ag–In–S, Cu–In–S, and Hg–In–S Nanocrystals of Small Size , 2020 .

[2]  D. Zahn,et al.  Mercury-indium-sulfide nanocrystals: A new member of the family of ternary in based chalcogenides. , 2019, The Journal of chemical physics.

[3]  M. Artemyev,et al.  Highly luminescent Zn–Cu–In–S/ZnS core/gradient shell quantum dots prepared from indium sulfide by cation exchange for cell labeling and polymer composites , 2019, Nanotechnology.

[4]  S. Lau,et al.  In2S3 Quantum Dots: Preparation, Properties and Optoelectronic Application , 2019, Nanoscale Research Letters.

[5]  N. Daneu,et al.  Mechanochemical Synthesis and Characterization of CuInS2/ZnS Nanocrystals , 2019, Molecules.

[6]  D. Zahn,et al.  Inherently Broadband Photoluminescence in Ag–In–S/ZnS Quantum Dots Observed in Ensemble and Single-Particle Studies , 2019, The Journal of Physical Chemistry C.

[7]  X. Bai,et al.  Optical Properties, Synthesis, and Potential Applications of Cu-Based Ternary or Quaternary Anisotropic Quantum Dots, Polytypic Nanocrystals, and Core/Shell Heterostructures , 2019, Nanomaterials.

[8]  D. Zahn,et al.  Vibrational spectroscopy of compound semiconductor nanocrystals , 2018, Journal of Physics D: Applied Physics.

[9]  Xiaohui Xie,et al.  Size-Dependent Band-Gap and Molar Absorption Coefficients of Colloidal CuInS2 Quantum Dots , 2018, ACS nano.

[10]  D. Zahn,et al.  Origin and Dynamics of Highly Efficient Broadband Photoluminescence of Aqueous Glutathione-Capped Size-Selected Ag–In–S Quantum Dots , 2018 .

[11]  D. Zahn,et al.  A Fine Size Selection of Brightly Luminescent Water-Soluble Ag–In–S and Ag–In–S/ZnS Quantum Dots , 2017 .

[12]  D. Zahn,et al.  Probing the structure of CuInS 2 -ZnS core-shell and similar nanocrystals by Raman spectroscopy , 2017 .

[13]  Patrick J. Whitham,et al.  Luminescent Colloidal Semiconductor Nanocrystals Containing Copper: Synthesis, Photophysics, and Applications. , 2016, Chemical reviews.

[14]  Alice D. P. Leach,et al.  Optoelectronic Properties of CuInS2 Nanocrystals and Their Origin. , 2016, The journal of physical chemistry letters.

[15]  P. Baláž,et al.  Synthesis and characterization of CuInS2 nanocrystalline semiconductor prepared by high-energy milling , 2016, Journal of Materials Science.

[16]  Optical characterization of the AgInS2 nanocrystals synthesized in aqueous media under stoichiometric conditions , 2015 .

[17]  Zheng Zhou,et al.  Structural and optical characterization of CuInS2 quantum dots synthesized by microwave-assisted continuous flow methods , 2015, Journal of Nanoparticle Research.

[18]  A. Romanyuk,et al.  The Photoluminescence Properties of CuInS2 and AgInS2 Nanocrystals Synthesized in Aqueous Solutions , 2015 .

[19]  A. Colantoni,et al.  Growth and characterization of single phase AgInS2 crystals for energy conversion application through β-In2S3 by thermal evaporation , 2015 .

[20]  T. Chi,et al.  Low-cost and large-scale synthesis of CuInS2 and CuInS2/ZnS quantum dots in diesel , 2014 .

[21]  M. Krunks,et al.  Raman spectroscopic study of In2S3 films prepared by spray pyrolysis , 2014 .

[22]  A. Pal,et al.  Fully-depleted pn-junction solar cells based on layers of Cu2ZnSnS4 (CZTS) and copper-diffused AgInS2 ternary nanocrystals , 2014 .

[23]  A. Pal,et al.  Hybrid pn-junction solar cells based on layers of inorganic nanocrystals and organic semiconductors: optimization of layer thickness by considering the width of the depletion region. , 2014, Physical chemistry chemical physics : PCCP.

[24]  S. Kuwabata,et al.  Photofunctional Materials Fabricated with Chalcopyrite-Type Semiconductor Nanoparticles Composed of AgInS2 and Its Solid Solutions. , 2014, The journal of physical chemistry letters.

[25]  D. Zahn,et al.  Raman scattering in orthorhombic CuInS2 nanocrystals , 2014 .

[26]  P. Kambhampati,et al.  Get the Basics Right: Jacobian Conversion of Wavelength and Energy Scales for Quantitative Analysis of Emission Spectra , 2013 .

[27]  A. Johannes,et al.  Atomic-scale structure, cation distribution, and bandgap bowing in Cu(In,Ga)S2 and Cu(In,Ga)Se2 , 2013 .

[28]  P. Reiss,et al.  Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications , 2013 .

[29]  A. Pal,et al.  Copper-diffused AgInS2 ternary nanocrystals in hybrid bulk-heterojunction solar cells: near-infrared active nanophotovoltaics. , 2013, ACS applied materials & interfaces.

[30]  Wu Zhou,et al.  Solvothermal synthesis of ultrasmall tungsten oxide nanoparticles. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[31]  Heesun Yang,et al.  Comparisons of the structural and optical properties of o-AgInS2, t-AgInS2, and c-AgIn5S8 nanocrystals and their solid-solution nanocrystals with ZnS , 2012 .

[32]  M. Bruns,et al.  Ultrasmall fluorescent silver nanoclusters: Protein adsorption and its effects on cellular responses , 2012, Nano Research.

[33]  Deren Yang,et al.  Controlled synthesis of luminescent CuInS2 nanocrystals and their optical properties , 2012 .

[34]  G. Czycholl,et al.  Theory of band gap bowing of disordered substitutional II–VI and III–V semiconductor alloys , 2011, 1112.5372.

[35]  O. Stroyuk,et al.  Electron energy factors in photocatalytic methylviologen reduction in the presence of semiconductor nanocrystals , 2010 .

[36]  O. Stroyuk,et al.  Size-Dependent Optical Properties of Colloidal ZnO Nanoparticles Charged by Photoexcitation , 2010 .

[37]  K. Cheng,et al.  Physical properties and photoresponse of Cu–Ag–In–S semiconductor electrodes created using chemical bath deposition , 2009 .

[38]  A. Barron,et al.  Ultrasmall copper nanoparticles from a hydrophobically immobilized surfactant template. , 2009, Nano letters.

[39]  J. Lead,et al.  Characterization of natural aquatic colloids (<5 nm) by flow-field flow fractionation and atomic force microscopy. , 2007, Environmental science & technology.

[40]  G. Angulo,et al.  Recalling the appropriate representation of electronic spectra. , 2006, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[41]  J. Pankow,et al.  Effect of Cu deficiency on the optical bowing of chalcopyrite CuIn1−xGaxSe2 , 2005 .

[42]  A. Kudo,et al.  Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS-CuInS2-AgInS2 solid-solution photocatalyst. , 2005, Angewandte Chemie.

[43]  A. Stroyuk,et al.  Optical and catalytic properties of Ag2S nanoparticles , 2004 .

[44]  A. Raevskaya,et al.  Catalytic activity of CuS nanoparticles in hydrosulfide ions air oxidation , 2004 .

[45]  I. Choi,et al.  The optical and vibrational properties of the quaternary chalcopyrite semiconductor alloy AgxCu1−xGaS2 , 2000 .

[46]  Shu Yasuda,et al.  Resonant Raman scattering and luminescence in CuInS2 crystals , 1998 .

[47]  Su-Huai Wei,et al.  Band offsets and optical bowings of chalcopyrites and Zn‐based II‐VI alloys , 1995 .

[48]  A. Barron,et al.  Synthesis of chalcopyrite semiconductors and their solid solutions by microwave irradiation , 1995 .

[49]  K. Honda,et al.  Measurement of the extinction coefficient of the methyl viologen cation radical and the efficiency of its formation by semiconductor photocatalysis , 1982 .

[50]  R. Hester,et al.  Infrared, Raman and Resonance Raman Investigations of Methylviologen and its Radical Cation , 1982 .

[51]  M. Balkanski,et al.  Far Infrared and Raman Optical Study of α- and β-In2S3 Compounds , 1981 .

[52]  M. Bettini,et al.  Zone‐centered phonons in AIBIIIS2 chalcopyrites , 1975 .