Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS 2 , Mo S e 2 , WS 2 , and WS e 2

This chapter presents the complex in-plane dielectric function from 1.5 to 3 eV for monolayers of four transition metal dichalcogenides: MoSe2, WSe2, MoS2, and WS2. The results were obtained from optical reflection spectra using a Kramers–Kronig constrained variational analysis. From the inferred dielectric functions, we obtain the absolute absorbance of the monolayers. We also provide a comparison of the dielectric function for the monolayers with the respective bulk materials [1].

[1]  G. Wang,et al.  Giant enhancement of the optical second-harmonic emission of WSe(2) monolayers by laser excitation at exciton resonances. , 2015, Physical review letters.

[2]  Xiaodong Cui,et al.  Exciton Binding Energy of Monolayer WS2 , 2014, Scientific Reports.

[3]  Claudia Ruppert,et al.  Optical properties and band gap of single- and few-layer MoTe2 crystals. , 2014, Nano letters.

[4]  J. Kong,et al.  Broadband optical properties of large-area monolayer CVD molybdenum disulfide , 2014, 1407.6997.

[5]  J. Shan,et al.  Tightly bound excitons in monolayer WSe(2). , 2014, Physical review letters.

[6]  Wang Yao,et al.  Spin and pseudospins in layered transition metal dichalcogenides , 2014, Nature Physics.

[7]  S. Pantelides,et al.  Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. , 2014, Nano letters.

[8]  Timothy C. Berkelbach,et al.  Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2). , 2014, Physical review letters.

[9]  Litao Sun,et al.  Synthesis and Optical Properties of Large‐Area Single‐Crystalline 2D Semiconductor WS2 Monolayer from Chemical Vapor Deposition , 2014 .

[10]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[11]  P. Jarillo-Herrero,et al.  Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. , 2013, Nature nanotechnology.

[12]  T. Mueller,et al.  Solar-energy conversion and light emission in an atomic monolayer p-n diode. , 2013, Nature nanotechnology.

[13]  S. Louie,et al.  Optical spectrum of MoS2: many-body effects and diversity of exciton states. , 2013, Physical review letters.

[14]  A. Neto,et al.  Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2. , 2013, Nano letters.

[15]  A. Neto,et al.  Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides , 2013, 1305.6672.

[16]  Yugui Yao,et al.  Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides , 2013, 1305.6089.

[17]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[18]  L. Chu,et al.  Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.

[19]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[20]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[21]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[22]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[23]  Yu‐Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[24]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[25]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[26]  Yingchun Cheng,et al.  Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors , 2011 .

[27]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[28]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[29]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[30]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Physical Review Letters 63 , 1989 .

[32]  Haas,et al.  Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. , 1987, Physical review. B, Condensed matter.

[33]  M. E. Cox Handbook of Optics , 1980 .

[34]  H. Hughes,et al.  Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2 , 1979 .

[35]  W. Y. Liang,et al.  Kramers-Kronig analysis of the reflectivity spectra of 3R-WS2 and 2H-WSe2 , 1976 .

[36]  L. Mattheiss Band Structures of Transition-Metal-Dichalcogenide Layer Compounds. , 1973 .

[37]  Robert M. White,et al.  Infrared-Reflectance Spectra of Layered Group-IV and Group-VI Transition-Metal Dichalcogenides , 1973 .

[38]  T. Wieting,et al.  Infrared and Raman Studies of Long-Wavelength Optical Phonons in Hexagonal Mo S 2 , 1971 .

[39]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[40]  E. Ball,et al.  Proceedings of the NATIONAL ACADEMY OF SCIENCES , 2022 .