Multirate Periodic Systems and Constrained Analytic Function Interpolation Problems

Multirate periodic systems and some related constrained analytic function interpolation problems are studied in this paper. After showing how to convert a general multirate periodic system to an equivalent linear time invariant (LTI) system with a structural constraint, we formulate some analytic function interpolation problems with such a constraint that can find various applications in the study of multirate and periodic systems. Both the solvability conditions and characterization of all solutions are presented to these constrained interpolation problems.

[1]  L. Rodman,et al.  Interpolation of Rational Matrix Functions , 1990 .

[2]  D. Sarason Generalized interpolation in , 1967 .

[3]  C. Sidney Burrus,et al.  A unified analysis of multirate and periodically time-varying digital filters , 1975 .

[4]  B. Pasik-Duncan Control-oriented system identification: An H∞ approach , 2002 .

[5]  Patrizio Colaneri,et al.  Invariant representations of discrete-time periodic systems , 2000, Autom..

[6]  Pramod Khargonekar,et al.  A Time-Domain Approach to Model Validation , 1992, 1992 American Control Conference.

[7]  Li Qiu,et al.  Unitary dilation approach to contractive matrix completion , 2004 .

[8]  Tongwen Chen,et al.  Multirate sampled-data systems: all H∞ suboptimal controllers and the minimum entropy controller , 1999, IEEE Trans. Autom. Control..

[9]  Li Qiu,et al.  Multirate systems and related interpolation problems , 2001 .

[10]  Li Qiu,et al.  H∞ design of general multirate sampled-data control systems , 1994, Autom..

[11]  Li Qiu,et al.  Direct State Space Solution of Multirate Sampled-Data H2 Optimal Control , 1998, Autom..

[12]  Hugo J. Woerdeman,et al.  Strictly contractive and positive completions for block matrices , 1990 .

[13]  D. C. Youla,et al.  Interpolation with positive real functions , 1967 .

[14]  Marinus A. Kaashoek Metric constrained interpolation and control theory , 2005 .

[15]  H. Dym,et al.  Extensions of band matrices with band inverses , 1981 .

[16]  J. William Helton,et al.  Operator theory, analytic functions, matrices, and electrical engineering , 1987 .

[17]  K. Poolla,et al.  Robust control of linear time-invariant plants using periodic compensation , 1985 .

[18]  Lang Tong,et al.  Blind identification and equalization based on second-order statistics: a time domain approach , 1994, IEEE Trans. Inf. Theory.

[19]  Arthur E. Frazho,et al.  Metric Constrained Interpolation, Commutant Lifting and Systems , 1998 .

[20]  Y. Genin,et al.  On the role of the Nevanlinna–Pick problem in circuit and system theory† , 1981 .

[21]  Li Qiu,et al.  Model validation of multirate systems from time-domain experimental data , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[22]  C. Foias,et al.  Harmonic Analysis of Operators on Hilbert Space , 1970 .

[23]  Li Qiu,et al.  𝓗2-optimal Design of Multirate Sampled-data Systems , 1994, IEEE Trans. Autom. Control..

[24]  P. Vaidyanathan Multirate Systems And Filter Banks , 1992 .

[25]  M. Vidyasagar Control System Synthesis : A Factorization Approach , 1988 .

[26]  C. Foias,et al.  The commutant lifting approach to interpolation problems , 1990 .

[27]  Munther A. Dahleh,et al.  H∞ and H2 optimal controllers for periodic and multirate systems , 1994, Autom..

[28]  Tryphon T. Georgiou,et al.  A generalized entropy criterion for Nevanlinna-Pick interpolation with degree constraint , 2001, IEEE Trans. Autom. Control..

[29]  Bozenna Pasik-Duncan,et al.  Control-oriented system identification: An Hinfinity approach: Jie Chen and Guoxiang Gu; Wiley, New York, 2000, ISBN 0471-32048-X , 2002, Autom..