Quantum Secure Direct Communication with Quantum Memory.

Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneousness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires the ability to control the transfer of a message effectively in the time domain; thus, it is essential to combine QSDC with quantum memory to accomplish the communication task. In this Letter, we report the experimental demonstration of QSDC with state-of-the-art atomic quantum memory for the first time in principle. We use the polarization degrees of freedom of photons as the information carrier, and the fidelity of entanglement decoding is verified as approximately 90%. Our work completes a fundamental step toward practical QSDC and demonstrates a potential application for long-distance quantum communication in a quantum network.

[1]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[2]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[3]  Weinfurter,et al.  Dense coding in experimental quantum communication. , 1996, Physical review letters.

[4]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[5]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[6]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[7]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[8]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[9]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[10]  J. Cirac,et al.  Experimental demonstration of quantum memory for light , 2004, Nature.

[11]  D. Matsukevich,et al.  Storage and retrieval of single photons transmitted between remote quantum memories , 2005, Nature.

[12]  Christian Kurtsiefer,et al.  Experimental single qubit quantum secret sharing. , 2005, Physical review letters.

[13]  Christian Kurtsiefer,et al.  Complete deterministic linear optics Bell state analysis. , 2006, Physical review letters.

[14]  A Kuzmich,et al.  Multiplexed memory-insensitive quantum repeaters. , 2007, Physical review letters.

[15]  H. Weinfurter,et al.  Entanglement-based quantum communication over 144km , 2007 .

[16]  I. Walmsley,et al.  Efficient spatially resolved multimode quantum memory , 2007, 0710.5033.

[17]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[18]  T. Wei,et al.  Beating the channel capacity limit for linear photonic superdense coding , 2008, 1009.5128.

[19]  Paul G. Kwiat,et al.  Beating the channel capacity limit for linear photonic superdense coding (Nature Physics (2008) 4, (282-286)) , 2008 .

[20]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[21]  Yu-Bo Sheng,et al.  Complete hyperentangled-Bell-state analysis for quantum communication , 2010, 1103.0230.

[22]  W. Munro,et al.  From quantum multiplexing to high-performance quantum networking , 2010 .

[23]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[24]  Jian-Wei Pan,et al.  Quantum teleportation and entanglement distribution over 100-kilometre free-space channels , 2012, Nature.

[25]  Guangcan Guo,et al.  Realization of a Two-Dimensional Magneto-optical Trap with a High Optical Depth * , 2012 .

[26]  Xiaosong Ma,et al.  Quantum teleportation over 143 kilometres using active feed-forward , 2012, Nature.

[27]  Che-Ming Li,et al.  Quantum teleportation between remote atomic-ensemble quantum memories , 2012, Proceedings of the National Academy of Sciences.

[28]  Christoph Simon,et al.  Prospective applications of optical quantum memories , 2013, 1306.6904.

[29]  Yoshihisa Yamamoto,et al.  Practical quantum key distribution protocol without monitoring signal disturbance , 2014, Nature.

[30]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[31]  Wei Zhang,et al.  Raman quantum memory of photonic polarized entanglement , 2014, 1410.7101.

[32]  Wei Zhang,et al.  Quantum storage of orbital angular momentum entanglement in an atomic ensemble. , 2014, Physical review letters.

[33]  Shuang Wang,et al.  Experimental demonstration of a quantum key distribution without signal disturbance monitoring , 2015, Nature Photonics.

[34]  Quantum cryptography based on bell theorem pdf , 2015 .

[35]  Jun Zhang,et al.  Advances in InGaAs/InP single-photon detector systems for quantum communication , 2015, Light: Science & Applications.

[36]  Jian-Wei Pan,et al.  Quantum teleportation of multiple degrees of freedom of a single photon , 2015, Nature.

[37]  Gui-Lu Long,et al.  Experimental quantum secure direct communication with single photons , 2015, Light: Science & Applications.

[38]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.