It's a Matter of Time: Modeling and Analysis of Time Dependent Systems Using Scenario-Aware Dataflow

Finite-state machine-based scenario-aware dataflow (FSM-SADF) is a dynamic non-deterministic dataflow model of computation that combines streaming data and finite-state control. However, FSM-SADF in its current state cannot be used in applications involving modeling and analysis of systems whose behavior depends on explicit values of timestamp of events. In this work we propose a compositional semantics for FSM-SADF that enables FSM-SADF to be used in modeling and analysis of such systems. We base the semantics of the composition on standard composition of processes with conditional rendezvous communication at the control level and the compositions of SDF graphs at the dataflow level. We evaluate the approach on a case study from the multimedia domain in the context of first come, first served schedulers.

[1]  Twan Basten,et al.  Tight temporal bounds for dataflow applications mapped onto shared resources , 2016, 2016 11th IEEE Symposium on Industrial Embedded Systems (SIES).

[2]  M. Diaz,et al.  Modeling and Verification of Time Dependent Systems Using Time Petri Nets , 1991, IEEE Trans. Software Eng..

[3]  Sander Stuijk,et al.  Worst-case performance analysis of Synchronous Dataflow scenarios , 2010, 2010 IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS).

[4]  Sander Stuijk,et al.  SDF^3: SDF For Free , 2006, Sixth International Conference on Application of Concurrency to System Design (ACSD'06).

[5]  Edward A. Lee,et al.  Scheduling dynamic dataflow graphs with bounded memory using the token flow model , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[6]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[7]  Maarten Wiggers,et al.  Dataflow analysis for multiprocessor systems with non-starvation-free schedulers , 2013, M-SCOPES.

[8]  Twan Basten,et al.  Compositional Dataflow Modelling for Cyclo-Static Applications , 2018, 2018 21st Euromicro Conference on Digital System Design (DSD).

[9]  Sander Stuijk,et al.  Performance analysis of weakly-consistent scenario-aware dataflow graphs , 2014, ACSSC.

[10]  Mariëlle Stoelinga,et al.  An Introduction to Probabilistic Automata , 2002, Bull. EATCS.

[11]  E.A. Lee,et al.  Synchronous data flow , 1987, Proceedings of the IEEE.

[12]  Ali Dasdan,et al.  Experimental analysis of the fastest optimum cycle ratio and mean algorithms , 2004, TODE.

[13]  Marc Geilen,et al.  The earlier the better: a theory of timed actor interfaces , 2011, HSCC '11.

[14]  Henk Corporaal,et al.  Worst-case throughput analysis of real-time dynamic streaming applications , 2012, CODES+ISSS '12.

[15]  Marco Bekooij,et al.  Hybrid Latency Minimization Approach using Model Checking and Dataflow Analysis , 2017, SCOPES.

[16]  Jean A. Peperstraete,et al.  Cycle-static dataflow , 1996, IEEE Trans. Signal Process..

[17]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[18]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[19]  W. Wonham,et al.  Supervisory control of timed discrete-event systems , 1994, IEEE Trans. Autom. Control..

[20]  Orlando Moreira,et al.  Cyclo-Static Data Flow Model for TDM , 2014, 2014 14th International Conference on Application of Concurrency to System Design.

[21]  Edward A. Lee,et al.  Compositionality in Synchronous Data Flow: modular code generation from hierarchical SDF graphs , 2010 .

[22]  Stephen A. Edwards,et al.  The Case for the Precision Timed (PRET) Machine , 2007, 2007 44th ACM/IEEE Design Automation Conference.

[23]  Marc Geilen,et al.  Compositionality in scenario-aware dataflow: a rendezvous perspective , 2018, LCTES.

[24]  Stavros Tripakis,et al.  Kronos: A Model-Checking Tool for Real-Time Systems , 1998, CAV.

[25]  Rainer Leupers,et al.  Handbook of Signal Processing Systems , 2010 .

[26]  Elizabeth Latronico,et al.  System Design, Modeling, and Simulation Using Ptolemy Ii Ontologies , 2013 .

[27]  Ed F. Deprettere,et al.  Dynamic Dataflow Graphs , 2018, Handbook of Signal Processing Systems.

[28]  Kim G. Larsen,et al.  Model checking of finite-state machine-based scenario-aware dataflow using timed automata , 2015, 10th IEEE International Symposium on Industrial Embedded Systems (SIES).

[29]  S. Gaubert Performance evaluation of (max, +) automata , 1995, IEEE Trans. Autom. Control..

[30]  Marc Geilen,et al.  Performance Model Checking Scenario-Aware Dataflow , 2011, FORMATS.

[31]  Marc Geilen,et al.  Synchronous dataflow scenarios , 2010, TECS.

[32]  Henk Corporaal,et al.  Symbolic analysis of dataflow applications mapped onto shared heterogeneous resources , 2014, 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC).

[33]  Giorgio Buttazzo,et al.  Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications , 1997 .

[34]  Marco Bekooij,et al.  An Abstraction-Refinement Theory for the Analysis and Design of Real-Time Systems , 2017, ACM Trans. Embed. Comput. Syst..

[35]  Sander Stuijk,et al.  Scenario-aware dataflow: Modeling, analysis and implementation of dynamic applications , 2011, 2011 International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation.

[36]  Geert Jan Olsder,et al.  Synchronization and Linearity: An Algebra for Discrete Event Systems , 1994 .