A New Approach for the Domination Problem on Permutation Graphs

Abstract Farber and Keil presented an O(n3 algorithm for finding a minimum weight dominating set on permutation graphs. In this paper, we take a new approach for solving the same problem. The algorithm takes O(n(m+n)) steps, where m is the number of edges in a permutation graph G of n nodes. Therefore, our algorithm is particularly good for the sparse permutation graphs.

[1]  Jeremy P. Spinrad,et al.  On Comparability and Permutation Graphs , 1985, SIAM J. Comput..

[2]  A. Lempel,et al.  Transitive Orientation of Graphs and Identification of Permutation Graphs , 1971, Canadian Journal of Mathematics.

[3]  Mikhail J. Atallah,et al.  Finding a minimum independent dominating set in a permutation graph , 1988, Discret. Appl. Math..

[4]  Lorna Stewart,et al.  A Linear Recognition Algorithm for Cographs , 1985, SIAM J. Comput..

[5]  Jeremy P. Spinrad,et al.  Bipartite permutation graphs , 1987, Discret. Appl. Math..

[6]  Martin Farber,et al.  Domination in Permutation Graphs , 1985, J. Algorithms.