Numerical Preservation of Velocity Induced Invariant Regions for Reaction–Diffusion Systems on Evolving Surfaces

We propose and analyse a finite element method with mass lumping (LESFEM) for the numerical approximation of reaction–diffusion systems (RDSs) on surfaces in $${\mathbb {R}}^3$$R3 that evolve under a given velocity field. A fully-discrete method based on the implicit–explicit (IMEX) Euler time-discretisation is formulated and dilation rates which act as indicators of the surface evolution are introduced. Under the assumption that the mesh preserves the Delaunay regularity under evolution, we prove a sufficient condition, that depends on the dilation rates, for the existence of invariant regions (i) at the spatially discrete level with no restriction on the mesh size and (ii) at the fully-discrete level under a timestep restriction that depends on the kinetics, only. In the specific case of the linear heat equation, we prove a semi- and a fully-discrete maximum principle. For the well-known activator-depleted and Thomas reaction–diffusion models we prove the existence of a family of rectangles in the phase space that are invariant only under specific growth laws. Two numerical examples are provided to computationally demonstrate (i) the discrete maximum principle and optimal convergence for the heat equation on a linearly growing sphere and (ii) the existence of an invariant region for the LESFEM–IMEX Euler discretisation of a RDS on a logistically growing surface.

[1]  Anotida Madzvamuse,et al.  Lumped finite elements for reaction-cross-diffusion systems on stationary surfaces , 2017, Comput. Math. Appl..

[2]  C. M. Elliott,et al.  Modelling cell motility and chemotaxis with evolving surface finite elements , 2012, Journal of The Royal Society Interface.

[3]  R. A. Barrio,et al.  The Effect of Growth and Curvature on Pattern Formation , 2004 .

[4]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[5]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[6]  Sabine Fenstermacher,et al.  Numerical Approximation Of Partial Differential Equations , 2016 .

[7]  Anotida Madzvamuse,et al.  Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains , 2010, Journal of mathematical biology.

[8]  Emmanuel Hebey Sobolev spaces on manifolds , 2008 .

[9]  N. Tuncer,et al.  Projected finite elements for systems of reaction-diffusion equations on closed evolving spheroidal surfaces , 2017 .

[10]  Buyang Li,et al.  Convergence of finite elements on an evolving surface driven by diffusion on the surface , 2016, Numerische Mathematik.

[11]  Richard Tsai,et al.  An implicit boundary integral method for computing electric potential of macromolecules in solvent , 2017, J. Comput. Phys..

[12]  Grady B. Wright,et al.  A High-Order Kernel Method for Diffusion and Reaction-Diffusion Equations on Surfaces , 2012, Journal of Scientific Computing.

[13]  D. Lacitignola,et al.  Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay , 2014, European Journal of Applied Mathematics.

[14]  P. Maini,et al.  Reaction and diffusion on growing domains: Scenarios for robust pattern formation , 1999, Bulletin of mathematical biology.

[15]  Ivonne Sgura,et al.  Virtual Element Method for the Laplace-Beltrami equation on surfaces , 2016, 1612.02369.

[16]  Charles M. Elliott,et al.  L2-estimates for the evolving surface finite element method , 2012, Math. Comput..

[17]  A. Madzvamuse,et al.  Exhibiting cross-diffusion-induced patterns for reaction-diffusion systems on evolving domains and surfaces. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Anotida Madzvamuse,et al.  Preserving invariance properties of reaction–diffusion systems on stationary surfaces , 2016, 1609.02741.

[19]  O. Lakkis,et al.  Global existence for semilinear reaction–diffusion systems on evolving domains , 2010, Journal of Mathematical Biology.

[20]  Constantino Carlos Reyes-Aldasoro,et al.  Whole cell tracking through the optimal control of geometric evolution laws , 2015, J. Comput. Phys..

[21]  Guillermo Sapiro,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: Bye Bye Triangulated Surfaces? , 2003 .

[22]  J. Schnakenberg,et al.  Simple chemical reaction systems with limit cycle behaviour. , 1979, Journal of theoretical biology.

[23]  A. Bretscher,et al.  Polarization of cell growth in yeast. , 2000, Journal of cell science.

[24]  Chieh Chen,et al.  An implicit boundary integral method for interfaces evolving by Mullins-Sekerka dynamics , 2015, 1604.00285.

[25]  C. M. Elliott,et al.  Error analysis for an ALE evolving surface finite element method , 2014, 1403.1402.

[26]  Jean-Francois Mangin,et al.  A Reaction-Diffusion Model of Human Brain Development , 2010, PLoS computational biology.

[27]  F. Yang,et al.  A robust and efficient adaptive multigrid solver for the optimal control of phase field formulations of geometric evolution laws , 2016, 1603.08572.

[28]  S. Bhat,et al.  Modeling and analysis of mass-action kinetics , 2009, IEEE Control Systems.

[29]  Y. Couder,et al.  Turning a plant tissue into a living cell froth through isotropic growth , 2009, Proceedings of the National Academy of Sciences.

[30]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[31]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.

[32]  Charles M. Elliott,et al.  Finite elements on evolving surfaces , 2007 .

[33]  B. Kovács,et al.  Computing arbitrary Lagrangian Eulerian maps for evolving surfaces , 2016, Numerical Methods for Partial Differential Equations.

[34]  S. I. Hariharan,et al.  Numerical methods for partial differential equations , 1986 .

[35]  Zhenbiao Yang,et al.  Control of Pollen Tube Tip Growth by a Rop GTPase–Dependent Pathway That Leads to Tip-Localized Calcium Influx , 1999, Plant Cell.

[36]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[37]  Michael E. Taylor,et al.  Partial Differential Equations III , 1996 .

[38]  Deborah Lacitignola,et al.  Turing pattern formation on the sphere for a morphochemical reaction-diffusion model for electrodeposition , 2017, Commun. Nonlinear Sci. Numer. Simul..

[39]  Andrew J. Wathen,et al.  A moving grid finite element method applied to a model biological pattern generator , 2003 .

[40]  C. M. Elliott,et al.  The surface finite element method for pattern formation on evolving biological surfaces , 2011, Journal of mathematical biology.

[41]  Arnold Reusken,et al.  A Higher Order Finite Element Method for Partial Differential Equations on Surfaces , 2016, SIAM J. Numer. Anal..

[42]  Patrik Sahlin,et al.  A Modeling Study on How Cell Division Affects Properties of Epithelial Tissues Under Isotropic Growth , 2010, PloS one.

[43]  A. Bretscher,et al.  Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. , 2000, Journal of cell science.

[44]  Li-Tien Cheng,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: The Framework and Exam , 2000 .

[45]  Rodrigo Ramos-Jiliberto,et al.  Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability , 2003 .