Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi

We present a comparison of the computer simulation data of gyroid nanostructures with optical measurements (reflectivity spectra and scattering diagrams) of ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi. We demonstrate that the omnidirectional green colour arises from the gyroid cuticular structure grown in the domains of different orientation. We also show that this three-dimensional structure, operating as a biophotonic crystal, gives rise to various polarization effects. We briefly discuss the possible biological utility of the green coloration and polarization effects.

[1]  Bodo D Wilts,et al.  Imaging scatterometry and microspectrophotometry of lycaenid butterfly wing scales with perforated multilayers , 2009, Journal of The Royal Society Interface.

[2]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[3]  Augustine Urbas,et al.  Photonic properties of bicontinuous cubic microphases , 2002 .

[4]  A. Kelber,et al.  Polarisation-dependent colour vision in Papilio butterflies. , 2001, The Journal of experimental biology.

[5]  Shuichi Kinoshita,et al.  Physics of structural colors , 2008 .

[6]  P Vukusic,et al.  Physical methods for investigating structural colours in biological systems , 2009, Journal of The Royal Society Interface.

[7]  K. Arikawa,et al.  Localization of spectral receptors in the ommatidium of butterfly compound eye determined by polarization sensitivity , 1992, Journal of Comparative Physiology A.

[8]  Michael O'Keeffe,et al.  A short history of an elusive yet ubiquitous structure in chemistry, materials, and mathematics. , 2008, Angewandte Chemie.

[9]  D. Stavenga,et al.  Imaging scatterometry of butterfly wing scales. , 2009, Optics express.

[10]  R. Wootton,et al.  Quantified interference and diffraction in single Morpho butterfly scales , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[11]  Krisztián Kertész,et al.  Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  R. B. Morris,et al.  Iridescence from diffraction structures in the wing scales of Callophrys rubi, the Green Hairstreak , 2009 .

[13]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[14]  K. Arikawa,et al.  Spectral Receptors of Nymphalid Butterflies , 1997, Die Naturwissenschaften.

[15]  Spain.,et al.  Self-Assembled Triply Periodic Minimal Surfaces as Molds for Photonic Band Gap Materials , 1998, cond-mat/9810299.

[16]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[17]  J. Roy Sambles,et al.  Shedding light on butterfly wings , 2001, SPIE Optics + Photonics.

[18]  Johan Olausson,et al.  The Millennium Atlas of Butterflies in Britain and Ireland , 2007 .

[19]  Alison M. Sweeney,et al.  Insect communication: Polarized light as a butterfly mating signal , 2003, Nature.

[20]  S. Doucet,et al.  Iridescence: a functional perspective , 2009, Journal of The Royal Society Interface.

[21]  Andrew R. Parker,et al.  Biomimetics: Photonic Nanostructures , 2010 .

[22]  D. Stavenga,et al.  Gyroid cuticular structures in butterfly wing scales: biological photonic crystals , 2007, Journal of The Royal Society Interface.

[23]  H. Ghiradella,et al.  Development of butterfly scales. II. Struts, lattices and surface tension , 1976, Journal of morphology.

[24]  H. Onslow,et al.  On a Periodic Structure in Many Insect Scales, and the Cause of Their Iridescent Colours , 1923 .

[25]  J. S. Kole,et al.  Photonic band gaps in materials with triply periodic surfaces and related tubular structures , 2003 .

[26]  Zhong Lin Wang,et al.  Controlled replication of butterfly wings for achieving tunable photonic properties. , 2006, Nano letters.

[27]  Davy P Gaillot,et al.  Composite organic-inorganic butterfly scales: production of photonic structures with atomic layer deposition. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  L. Poladian,et al.  Iridescence from photonic crystals and its suppression in butterfly scales , 2009, Journal of The Royal Society Interface.

[29]  P. Garstecki,et al.  Photonic properties of multicontinuous cubic phases , 2002 .