Evaluation of MERRA Land Surface Estimates in Preparation for the Soil Moisture Active Passive Mission

AbstractThe authors evaluated several land surface variables from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) product that are important for global ecological and hydrological studies, including daily maximum (Tmax) and minimum (Tmin) surface air temperatures, atmosphere vapor pressure deficit (VPD), incident solar radiation (SWrad), and surface soil moisture. The MERRA results were evaluated against in situ measurements, similar global products derived from satellite microwave [the Advanced Microwave Scanning Radiometer for Earth Observing System (EOS) (AMSR-E)] remote sensing and earlier generation atmospheric analysis [Goddard Earth Observing System version 4 (GEOS-4)] products. Relative to GEOS-4, MERRA is generally warmer (~0.5°C for Tmin and Tmax) and drier (~50 Pa for VPD) for low- and middle-latitude regions ( 3°C) in mountainous areas, tro...

[1]  Xingguo Mo,et al.  Evaluation of Reanalysis Soil Moisture Simulations Using Updated Chinese Soil Moisture Observations , 2005 .

[2]  Beryl Graham,et al.  Digital Media , 2003 .

[3]  Randal D. Koster,et al.  On the Nature of Soil Moisture in Land Surface Models , 2009 .

[4]  R. Jeu,et al.  Multisensor historical climatology of satellite‐derived global land surface moisture , 2008 .

[5]  S. Running,et al.  An improved method for estimating surface humidity from daily minimum temperature , 1997 .

[6]  Steven W. Running,et al.  Comparing global models of terrestrial net primary productivity (NPP): the importance of water availability , 1999 .

[7]  Jouni Pulliainen,et al.  Detection of Snowmelt Using Spaceborne Microwave Radiometer Data in Eurasia From 1979 to 2007 , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Natascha Kljun,et al.  Seasonal variation and partitioning of ecosystem respiration in a southern boreal aspen forest , 2004 .

[9]  P. Dirmeyer,et al.  Comparison, Validation, and Transferability of Eight Multiyear Global Soil Wetness Products , 2004 .

[10]  E. Wood,et al.  Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling , 2006 .

[11]  Michael G. Bosilovich,et al.  Global Energy and Water Budgets in MERRA , 2011 .

[12]  Michael G. Bosilovich,et al.  Documentation and Validation of the Goddard Earth Observing System (GEOS) Data Assimilation System, Version 4 , 2005 .

[13]  Ramakrishna R. Nemani,et al.  A generalized, bioclimatic index to predict foliar phenology in response to climate , 2004 .

[14]  W. Oechel,et al.  FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities , 2001 .

[15]  Praveen Kumar,et al.  A catchment‐based approach to modeling land surface processes in a general circulation model: 1. Model structure , 2000 .

[16]  Thomas J. Jackson,et al.  Soil moisture retrieval from AMSR-E , 2003, IEEE Trans. Geosci. Remote. Sens..

[17]  Yaoming Ma,et al.  Evaluation of satellite estimates of downward shortwave radiation over the Tibetan Plateau , 2008 .

[18]  J. Randerson,et al.  Systematic assessment of terrestrial biogeochemistry in coupled climate–carbon models , 2009 .

[19]  Mei Zhao,et al.  Comparison of ERA40 and NCEP/DOE near‐surface data sets with other ISLSCP‐II data sets , 2006 .

[20]  G. D. Jenerette,et al.  Effects of seasonal drought on net carbon dioxide exchange from a woody-plant-encroached semiarid grassland , 2009 .

[21]  R. Koster,et al.  Assessment and Enhancement of MERRA Land Surface Hydrology Estimates , 2011 .

[22]  Ricardo Todling,et al.  The GEOS-5 Data Assimilation System-Documentation of Versions 5.0.1, 5.1.0, and 5.2.0 , 2008 .

[23]  Maosheng Zhao,et al.  Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses , 2006 .

[24]  Maosheng Zhao,et al.  A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production , 2004 .

[25]  Michael G. Bosilovich,et al.  Evaluation of Global Precipitation in Reanalyses , 2008 .

[26]  Randal D. Koster,et al.  Bias reduction in short records of satellite soil moisture , 2004 .

[27]  Jeffrey P. Walker,et al.  A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index , 2001, IEEE Trans. Geosci. Remote. Sens..

[28]  Dennis P. Lettenmaier,et al.  Variable infiltration capacity cold land process model updates , 2003 .

[29]  J. Townshend,et al.  Global land cover classifications at 8 km spatial resolution: The use of training data derived from Landsat imagery in decision tree classifiers , 1998 .

[30]  D. Qin,et al.  Evaluation of ERA‐40, NCEP‐1, and NCEP‐2 reanalysis air temperatures with ground‐based measurements in China , 2008 .

[31]  Michael G. Bosilovich,et al.  Intercomparison of water and energy budgets for five Mississippi subbasins between ECMWF reanalysis (ERA‐40) and NASA Data Assimilation Office fvGCM for 1990–1999 , 2003 .

[32]  Thomas R. H. Holmes,et al.  An evaluation of AMSR–E derived soil moisture over Australia , 2009 .

[33]  F. Stuart Chapin,et al.  Detecting changes in arctic tundra plant communities in response to warming over decadal time scales , 2004 .

[34]  Max J. Suarez,et al.  The Impact of Detailed Snow Physics on the Simulation of Snow Cover and Subsurface Thermodynamics at Continental Scales , 2001 .

[35]  S. Goetz,et al.  Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005 , 2008 .

[36]  Randal D. Koster,et al.  A Catchment-Based Approach to Modeling Land Surface Processes in a Gcm, Part 1: Model Structure , 2013 .

[37]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.

[38]  Li Li,et al.  Global survey and statistics of radio-frequency interference in AMSR-E land observations , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[39]  R. Koster,et al.  Global Soil Moisture from Satellite Observations, Land Surface Models, and Ground Data: Implications for Data Assimilation , 2004 .

[40]  John S. Kimball,et al.  Satellite Microwave Remote Sensing of Boreal and Arctic Soil Temperatures From AMSR-E , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[41]  John S. Kimball,et al.  A Satellite Approach to Estimate Land–Atmosphere $\hbox{CO}_{2}$ Exchange for Boreal and Arctic Biomes Using MODIS and AMSR-E , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Aaron A. Berg,et al.  Impact of bias correction to reanalysis products on simulations of North American soil moisture and hydrological fluxes , 2003 .

[43]  Miikka Dal Maso,et al.  Long-term measurements of surface fluxes above a Scots pine forest in Hyytiälä, southern Finland, 1996-2001 , 2003 .

[44]  John S. Kimball,et al.  Satellite assessment of land surface evapotranspiration for the pan‐Arctic domain , 2009 .

[45]  R. Pinker,et al.  Modeling Surface Solar Irradiance for Satellite Applications on a Global Scale , 1992 .

[46]  Klaus Scipal,et al.  A possible solution for the problem of estimating the error structure of global soil moisture data sets , 2008 .

[47]  Maosheng Zhao,et al.  Improvements of the MODIS terrestrial gross and net primary production global data set , 2005 .

[48]  Eric F. Wood,et al.  Satellite Microwave Remote Sensing of Daily Land Surface Air Temperature Minima and Maxima From AMSR-E , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.