Evolutionary equations driven by fractional Brownian motion

[1]  J. Bell Gaussian Hilbert spaces , 2015 .

[2]  S. Londen,et al.  Maximal regularity for stochastic integral equations , 2013 .

[3]  M. Veraar,et al.  Tools for Malliavin Calculus in UMD Banach Spaces , 2012, 1204.2946.

[4]  W. Desch,et al.  An Lp-theory for stochastic integral equations , 2011 .

[5]  R. Balan Lp-theory for the stochastic heat equation with infinite-dimensional fractional noise , 2009, 0905.2150.

[6]  David Nualart Rodón,et al.  The Malliavin Calculus and Related Topics , 2006 .

[7]  D. Nualart,et al.  Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H∈(0,12) , 2005 .

[8]  G. Simonett,et al.  Quasilinear evolutionary equations and continuous interpolation spaces , 2004 .

[9]  D. Nualart,et al.  Stochastic integration with respect to the fractional Brownian motion , 2003 .

[10]  Esko Valkeila,et al.  Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion , 2001 .

[11]  C. Carracedo,et al.  The theory of fractional powers of operators , 2001 .

[12]  M. Taqqu,et al.  Integration questions related to fractional Brownian motion , 2000 .

[13]  D. Nualart Analysis on Wiener space and anticipating stochastic calculus , 1998 .

[14]  Nicolai V. Krylov,et al.  On Lp-theory of stochastic partial di6erential equations in the whole space , 1996 .

[15]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[16]  J. Prüss Evolutionary Integral Equations And Applications , 1993 .

[17]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[18]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .