Was cratonic Asia deeply subducted beneath the Pamir? Evidence from P–T conditions and tectonic affinities of Cenozoic Pamir crustal xenoliths

One of the most striking geological features of the Pamir is the south‐dipping lithospheric slab beneath the orogen characterized by an intracontinental Wadati‐Benioff zone. A widely accepted hypothesis over the past 40 years interprets the slab to represent southward subducted cratonic Asian continental lithosphere, which predicts significant cratonic Asia‐sourced crustal materials (e.g., Tarim Basin) beneath the Pamir. Alternatively, recent studies have interpreted the slab to be lithosphere delaminated from the base of the Pamir. To test these hypotheses, depth–tectonic affinity relations of crustal xenoliths carried by Miocene volcanic rocks in the eastern Pamir, interpreted to be sourced from the Pamir deep lithosphere, are used to determine whether they represented Asian affinity cratonic crust. Thermodynamic calculations, zircon U–Pb geochronology combined with rare earth element analysis, and whole‐rock major‐trace element and Sr–Nd isotopic analyses document that (1) eclogite and pyroxenite xenoliths (~31–43 kbar/~960–1170°C) are the deepest sourced portions of the lithosphere from ~100 to 140 km depth, the protoliths of which represent the mid‐lower crustal rocks of the Cretaceous Pamir magmatic arc, rather than material from cratonic Asia, and (2) granulite xenoliths (~20 kbar/~900°C) represent the Cenozoic lower crustal rocks of Pamir terranes from ~70 km depth. These results indicate the south‐dipping slab represents delaminated Pamir lower crust and mantle lithosphere, rather than intracontinental subduction of Asian lithosphere, and further support the hypothesis of minimal Cenozoic northward translation of the Pamir.

[1]  A. C. Robinson,et al.  Mesozoic Tectonic Evolution in the Kurgovat‐Vanch Complex, NW Pamir , 2022, Tectonics.

[2]  Yong‐Fei Zheng,et al.  Tectonic evolution of convergent plate margins and its geological effects , 2022, Science China Earth Sciences.

[3]  L. Ratschbacher,et al.  Garnet, zircon, and monazite age and REE signatures in (ultra)high‐temperature and high‐pressure rocks: Examples from the Caledonides and the Pamir , 2022, Journal of Metamorphic Geology.

[4]  Geologic Evolution , 2022, Atlas of Yellowstone.

[5]  Yong‐Fei Zheng,et al.  Extreme metamorphism and metamorphic facies series at convergent plate boundaries: Implications for supercontinent dynamics , 2021, Geosphere.

[6]  Renjun Xu,et al.  Estimating ferric iron content in clinopyroxene using machine learning models , 2021, American Mineralogist.

[7]  Jie Chen,et al.  The Carboniferous Arc of the North Pamir , 2021 .

[8]  A. C. Robinson,et al.  Was the Pamir salient built along a Late Paleozoic embayment on the southern Asian margin? , 2020 .

[9]  Andrew Fowler Thermal Structure , 2020, Springer Textbooks in Earth Sciences, Geography and Environment.

[10]  Lei Zhang,et al.  Quaternary Volcanism in Myanmar: A Record of Indian Slab Tearing in a Transition Zone From Oceanic to Continental Subduction , 2020, Geochemistry, Geophysics, Geosystems.

[11]  X. Yao,et al.  Rushan-Pshart Paleo-Tethyan suture deduced from geochronological, geochemical, and Sr-Nd-Hf isotopic characteristics of granitoids in Pamir , 2020 .

[12]  A. C. Robinson,et al.  Evidence for Late Triassic crustal suturing of the Central and Southern Pamir , 2020 .

[13]  Hongfei Zhang,et al.  Formation and composition of the Late Cretaceous Gangdese arc lower crust in southern Tibet , 2020, Contributions to Mineralogy and Petrology.

[14]  A. C. Robinson,et al.  Muztaghata Dome Miocene Eclogite Facies Metamorphism: A Record of Lower Crustal Evolution of the NE Pamir , 2020, Tectonics.

[15]  L. Ratschbacher,et al.  Tajik Basin and Southwestern Tian Shan, Northwestern India‐Asia Collision Zone: 1. Structure, Kinematics, and Salt Tectonics in the Tajik Fold‐and‐Thrust Belt of the Western Foreland of the Pamir , 2020, Tectonics.

[16]  J. Khan,et al.  Tajik Basin and Southwestern Tian Shan, Northwestern India‐Asia Collision Zone: 2. Timing of Basin Inversion, Tian Shan Mountain Building, and Relation to Pamir‐Plateau Advance and Deep India‐Asia Indentation , 2020, Tectonics.

[17]  J. Brückner,et al.  Tajik Basin and Southwestern Tian Shan, Northwestern India‐Asia Collision Zone: 3. Preorogenic to Synorogenic Retro‐foreland Basin Evolution in the Eastern Tajik Depression and Linkage to the Pamir Hinterland , 2020, Tectonics.

[18]  J. Khan,et al.  The Alichur Dome, South Pamir, Western India–Asia Collisional Zone: Detailing the Neogene Shakhdara–Alichur Syn‐collisional Gneiss‐Dome Complex and Connection to Lithospheric Processes , 2020, Tectonics.

[19]  Jie Chen,et al.  Along‐Strike and Downdip Segmentation of the Pamir Frontal Thrust and Its Association With the 1985 Mw 6.9 Wuqia Earthquake , 2019, Journal of Geophysical Research: Solid Earth.

[20]  P. Viot Numerical Simulations , 2019, Stochastic Models in the Life Sciences and Their Methods of Analysis.

[21]  L. Ratschbacher,et al.  The Crust in the Pamir: Insights From Receiver Functions , 2019, Journal of Geophysical Research: Solid Earth.

[22]  A. C. Robinson,et al.  Mesozoic evolution of the eastern Pamir , 2019, Lithosphere.

[23]  P. Molnar,et al.  Seismic Moments of Intermediate‐Depth Earthquakes Beneath the Hindu Kush: Active Stretching of a Blob of Sinking Thickened Mantle Lithosphere? , 2019, Tectonics.

[24]  Shah Faisal,et al.  Mesozoic to Cenozoic tectono‐metamorphic history of the South Pamir–Hindu Kush (Chitral, NW Pakistan): Insights from phase equilibria modelling, and garnet–monazite petrochronology , 2019, Journal of Metamorphic Geology.

[25]  G. Dupont‐Nivet,et al.  Tectonic Evolution of the Pamir Recorded in the Western Tarim Basin (China): Sedimentologic and Magnetostratigraphic Analyses of the Aertashi Section , 2019, Tectonics.

[26]  M. Searle,et al.  Structural and metamorphic evolution of the Karakoram and Pamir following India–Kohistan–Asia collision , 2018, Special Publications.

[27]  A. C. Robinson,et al.  Cretaceous shortening and exhumation history of the South Pamir terrane , 2018 .

[28]  R. Powell,et al.  Melting of Peridotites through to Granites: A Simple Thermodynamic Model in the System KNCFMASHTOCr , 2018 .

[29]  Lei Wu,et al.  Arcuate Pamir in the Paleogene? Insights from a review of stratigraphy and sedimentology of the basin fills in the foreland of NE Chinese Pamir, western Tarim Basin , 2018 .

[30]  A. Zanchi,et al.  The Bashgumbaz Complex (Tajikistan): Arc obduction in the Cimmerian orogeny of the Pamir , 2018 .

[31]  J. Chapman,et al.  Mesozoic to Cenozoic magmatic history of the Pamir , 2018 .

[32]  L. Baumgartner,et al.  Reconstruction of multiple P-T-t stages from retrogressed mafic rocks: Subduction versus collision in the Southern Brasília orogen (SE Brazil) , 2017 .

[33]  P. DeCelles,et al.  Intracontinental subduction beneath the Pamir Mountains: Constraints from thermokinematic modeling of shortening in the Tajik fold-and-thrust belt , 2017 .

[34]  G. Dupont‐Nivet,et al.  Pamir Plateau formation and crustal thickening before the India-Asia collision inferred from dating and petrology of the 110-92 Ma Southern Pamir volcanic sequence , 2017 .

[35]  J. Chapman,et al.  Birth, life, and demise of the Andean–syn‐collisional Gissar arc: Late Paleozoic tectono‐magmatic‐metamorphic evolution of the southwestern Tian Shan, Tajikistan , 2017 .

[36]  L. Ratschbacher,et al.  Foundering Triggered by the Collision of India and Asia Captured in Xenoliths , 2017 .

[37]  L. Ratschbacher,et al.  Building the Pamir‐Tibet Plateau—Crustal stacking, extensional collapse, and lateral extrusion in the Pamir: 3. Thermobarometry and petrochronology of deep Asian crust , 2017 .

[38]  A. C. Robinson,et al.  Miocene exhumation of northeast Pamir: Deformation and geo/thermochronological evidence from western Muztaghata shear zone and Kuke ductile shear zone , 2017 .

[39]  E. Leven PERMIAN AND TRIASSIC OF THE RUSHAN-PSHART ZONE (PAMIR) , 2017 .

[40]  L. Ratschbacher,et al.  A view into crustal evolution at mantle depths , 2017 .

[41]  L. Ratschbacher,et al.  Building the Pamir‐Tibetan Plateau—Crustal stacking, extensional collapse, and lateral extrusion in the Central Pamir: 1. Geometry and kinematics , 2017 .

[42]  J. Khan,et al.  Building the Pamir‐Tibetan Plateau—Crustal stacking, extensional collapse, and lateral extrusion in the Central Pamir: 2. Timing and rates , 2017 .

[43]  R. Powell,et al.  Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks , 2016 .

[44]  K. Klimm,et al.  Ca-Eskola incorporation in clinopyroxene: limitations and petrological implications for eclogites and related rocks , 2016, Contributions to Mineralogy and Petrology.

[45]  G. Dupont‐Nivet,et al.  Indentation of the Pamirs with respect to the northern margin of Tibet: Constraints from the Tarim basin sedimentary record , 2016 .

[46]  R. Palin,et al.  Quantifying geological uncertainty in metamorphic phase equilibria modelling; a Monte Carlo assessment and implications for tectonic interpretations , 2016 .

[47]  L. Ratschbacher,et al.  Deep India meets deep Asia: Lithospheric indentation, delamination and break-off under Pamir and Hindu Kush (Central Asia) , 2016 .

[48]  S. Mukhamediev,et al.  Tectonic interaction between the Pamir and Tien Shan observed by GPS , 2016 .

[49]  K. Hodges,et al.  Age and structure of the Shyok suture in the Ladakh region of northwestern India: Implications for slip on the Karakoram fault system , 2015 .

[50]  J. Vergés,et al.  Lithospheric structure in Central Eurasia derived from elevation, geoid anomaly and thermal analysis , 2015, Special Publications.

[51]  P. Kelemen,et al.  Role of Arc Processes in the Formation of Continental Crust , 2015 .

[52]  J. Saleeby,et al.  The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs , 2015 .

[53]  A. C. Robinson Mesozoic tectonics of the Gondwanan terranes of the Pamir plateau , 2015 .

[54]  A. Zanchi,et al.  From rift to drift in South Pamir (Tajikistan): Permian evolution of a Cimmerian terrane , 2015 .

[55]  L. Ratschbacher,et al.  Titanite petrochronology of the Pamir gneiss domes: Implications for middle to deep crust exhumation and titanite closure to Pb and Zr diffusion , 2015 .

[56]  C. Beyer,et al.  Experimental calibration of a garnet–clinopyroxene geobarometer for mantle eclogites , 2015, Contributions to Mineralogy and Petrology.

[57]  D. Frost,et al.  The oxygen fugacity at which graphite or diamond forms from carbonate-bearing melts in eclogitic rocks , 2015, Contributions to Mineralogy and Petrology.

[58]  L. Ratschbacher,et al.  Early evolution of the Pamir deep crust from Lu-Hf and U-Pb geochronology and garnet thermometry , 2014 .

[59]  G. Gehrels,et al.  Multisystem dating of modern river detritus from Tajikistan and China: Implications for crustal evolution and exhumation of the Pamir , 2014 .

[60]  Yongqiang Zhang,et al.  Moho depth, seismicity and seismogenic structure in China mainland , 2014 .

[61]  M. Ritzwoller,et al.  Partially melted, mica‐bearing crust in Central Tibet , 2014 .

[62]  R. Powell,et al.  Intermediate granulite produced by transformation of eclogite at a felsic granulite contact, in Blanský les, Bohemian Massif , 2014 .

[63]  R. Powell,et al.  New mineral activity–composition relations for thermodynamic calculations in metapelitic systems , 2014 .

[64]  A. Pullen,et al.  Age and geochemistry of western Hoh-Xil-Songpan-Ganzi granitoids, northern Tibet: Implications for the Mesozoic closure of the Paleo-Tethys ocean , 2014 .

[65]  Qing Zhou,et al.  Origin of Early Cretaceous high-K calc-alkaline granitoids, western Tibet: implications for the evolution of the Tethys in NW China , 2014 .

[66]  C. Haberland,et al.  Deep burial of Asian continental crust beneath the Pamir imaged with local earthquake tomography , 2013 .

[67]  A. Zanchi,et al.  The Cimmerian geopuzzle: new data from South Pamir , 2013 .

[68]  L. Ratschbacher,et al.  Synchronous Oligocene–Miocene metamorphism of the Pamir and the north Himalaya driven by plate-scale dynamics , 2013 .

[69]  C. Haberland,et al.  Seismic imaging of subducting continental lower crust beneath the Pamir , 2013 .

[70]  R. Gloaguen,et al.  The giant Shakhdara migmatitic gneiss dome, Pamir, India‐Asia collision zone: 1. Geometry and kinematics , 2013 .

[71]  Sean P. Funk,et al.  Melting phase relations of a mica–clinopyroxenite from the Milk River area, southern Alberta, Canada , 2013, Contributions to Mineralogy and Petrology.

[72]  Richard Gloaguen,et al.  Seismotectonics of the Pamir , 2013 .

[73]  C. Haberland,et al.  Geometry of the Pamir‐Hindu Kush intermediate‐depth earthquake zone from local seismic data , 2013 .

[74]  J. Hanchar,et al.  Dating the India–Eurasia collision through arc magmatic records , 2013 .

[75]  Jie Chen,et al.  Oceanic-style subduction controls late Cenozoic deformation of the Northern Pamir orogen , 2013 .

[76]  Owen K. Neill,et al.  MINERAL: A program for the propagation of analytical uncertainty through mineral formula recalculations , 2012, Comput. Geosci..

[77]  M. Searle,et al.  Combined thermobarometry and geochronology of peraluminous metapelites from the Karakoram metamorphic complex, North Pakistan; New insight into the tectonothermal evolution of the Baltoro and Hunza Valley regions , 2012 .

[78]  V. Kamenetsky,et al.  Oxidation state of subarc mantle , 2012 .

[79]  K. Evans The redox budget of subduction zones , 2012 .

[80]  P. Kelemen,et al.  The thermal structure of continental crust in active orogens: insight from Miocene eclogite and granulite xenoliths of the Pamir Mountains , 2012 .

[81]  A. C. Robinson,et al.  Detrital zircon and isotopic constraints on the crustal architecture and tectonic evolution of the northeastern Pamir , 2012 .

[82]  C. Lukens,et al.  Miocene exhumation of the Pamir revealed by detrital geothermochronology of Tajik rivers , 2012 .

[83]  Qing Zhou,et al.  Miocene potassic granite–syenite association in western Tibetan Plateau: Implications for shoshonitic and high Ba–Sr granite genesis , 2012 .

[84]  G. Gehrels,et al.  Cenozoic deep crust in the Pamir , 2011 .

[85]  D. Upadhyay,et al.  Response of the U–Pb chronometer and trace elements in zircon to ultrahigh-temperature metamorphism: The Kadavur anorthosite complex, southern India , 2011 .

[86]  A. Tomkins,et al.  The relationship between subduction zone redox budget and arc magma fertility , 2011 .

[87]  P. Kelemen,et al.  Differentiation of the continental crust by relamination , 2011 .

[88]  M. Searle Geological evolution of the Karakoram ranges , 2011 .

[89]  A. Zanchi,et al.  The geology of the Karakoram range, Pakistan: the new 1:100,000 geological map of Central-Western Karakoram , 2011 .

[90]  Jie Chen,et al.  Late Miocene-Pliocene deceleration of dextral slip between Pamir and Tarim: Implications for Pamir orogenesis , 2011 .

[91]  Roger Powell,et al.  An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids , 2011 .

[92]  T. Lapen,et al.  Signal linearity of an extended range pulse counting detector: Applications to accurate and precise U‐Pb dating of zircon by laser ablation quadrupole ICP‐MS , 2010 .

[93]  D. Nakamura,et al.  A new formulation of garnet–clinopyroxene geothermometer based on accumulation and statistical analysis of a large experimental data set , 2009 .

[94]  A. Pêcher,et al.  Partial Melting of Mantle and Crustal Sources beneath South Karakorum, Pakistan: Implications for the Miocene Geodynamic Evolution of the India–Asia Convergence Zone , 2009 .

[95]  Shuhab D. Khan,et al.  Did the Kohistan-Ladakh island arc collide first with India? , 2009 .

[96]  D. Bosch,et al.  Geochemical Architecture of the Lower- to Middle-crustal Section of a Paleo-island Arc (Kohistan Complex, Jijal-Kamila Area, Northern Pakistan): Implications for the Evolution of an Oceanic Subduction Zone , 2009 .

[97]  Yao-Hui Jiang,et al.  An island arc origin of plagiogranites at Oytag, western Kunlun orogen, northwest China: SHRIMP zircon U–Pb chronology, elemental and Sr–Nd–Hf isotopic geochemistry and Paleozoic tectonic implications , 2008 .

[98]  R. Pysklywec,et al.  Near‐surface diagnostics of dripping or delaminating lithosphere , 2008 .

[99]  M. Whitehouse,et al.  Plesovice zircon : A new natural reference material for U-Pb and Hf isotopic microanalysis , 2008 .

[100]  R. Powell,et al.  On thermobarometry , 2008 .

[101]  D. Bosch,et al.  Multistage evolution of the Jijal ultramafic-mafic complex (Kohistan, N Pakistan): Implications for building the roots of island arcs , 2007 .

[102]  R. Powell,et al.  The pressure dependence of the zirconium‐in‐rutile thermometer , 2007 .

[103]  A. Replumaz,et al.  Modeling the evolution of continental subduction processes in the Pamir–Hindu Kush region , 2007 .

[104]  A. C. Robinson,et al.  Cenozoic evolution of the eastern Pamir: Implications for strain-accommodation mechanisms at the western end of the Himalayan-Tibetan orogen , 2007 .

[105]  G. Gehrels,et al.  Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet , 2007 .

[106]  D. Rubatto,et al.  Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks , 2007 .

[107]  K. Evans Redox decoupling and redox budgets: Conceptual tools for the study of earth systems , 2006 .

[108]  P. Jian,et al.  Accretionary Tectonics of the Western Kunlun Orogen, China: A Paleozoic–Early Mesozoic, Long‐Lived Active Continental Margin with Implications for the Growth of Southern Eurasia , 2005, The Journal of Geology.

[109]  L. Ratschbacher,et al.  Near-Ultrahigh Pressure Processing of Continental Crust: Miocene Crustal Xenoliths from the Pamir , 2005 .

[110]  James A. D. Connolly,et al.  Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation , 2005 .

[111]  K. Priestley,et al.  Thermal structure of oceanic and continental lithosphere , 2005 .

[112]  R. Kind,et al.  The lithosphere‐asthenosphere boundary in the Tien Shan‐Karakoram region from S receiver functions: Evidence for continental subduction , 2005 .

[113]  V. Minaev,et al.  The composition, genesis, and mantle xenoliths of the Late Miocene fergusite-carbonatite-syenite series of the Pamir: the problem of superthick crust formation in mobile belts , 2005 .

[114]  Paul D. Asimow,et al.  Adiabat_1ph: A new public front‐end to the MELTS, pMELTS, and pHMELTS models , 2005 .

[115]  William L. Griffin,et al.  The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology , 2004 .

[116]  A. P. Douce,et al.  Vapor-Absent Melting of Tonalite at 15–32 kbar , 2004 .

[117]  L. Ratschbacher,et al.  Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet , 2004 .

[118]  E. Ravna,et al.  Geothermobarometry of UHP and HP eclogites and schists – an evaluation of equilibria among garnet–clinopyroxene–kyanite–phengite–coesite/quartz , 2004 .

[119]  A. C. Robinson,et al.  Tectonic evolution of the northeastern Pamir: Constraints from the northern portion of the Cenozoic Kongur Shan extensional system, western China , 2004 .

[120]  C. McCammon,et al.  Pitfalls in geothermobarometry of eclogites: Fe3+ and changes in the mineral chemistry of omphacite at ultrahigh pressures , 2004 .

[121]  Marie-Pierre Doin,et al.  Numerical simulations of the mantle lithosphere delamination , 2004 .

[122]  G. Gehrels,et al.  Building the Pamirs: The view from the underside: Geology , 2003 .

[123]  T. Harrison,et al.  Reconstruction of the Altyn Tagh fault based on U-Pb geochronology: Role of back thrusts, mantle sutures, and heterogeneous crustal strength in forming the Tibetan Plateau , 2003 .

[124]  M. Ducea Constraints on the bulk composition and root foundering rates of continental arcs: A California arc perspective , 2002 .

[125]  T. Holland,et al.  Mixing properties of phengitic micas and revised garnet‐phengite thermobarometers , 2002 .

[126]  D. Rubatto Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism , 2002 .

[127]  H. Lapierre,et al.  The cretaceous Ladakh arc of NW himalaya—slab melting and melt–mantle interaction during fast northward drift of Indian Plate , 2002 .

[128]  P. Kelemen,et al.  On the conditions for lower crustal convective instability , 2001 .

[129]  D. Cherniak,et al.  Pb diffusion in zircon , 2001 .

[130]  M. Kohn,et al.  Retrograde net transfer reaction insurance for pressure-temperature estimates , 2000 .

[131]  M. J. Holdaway Application of new experimental and garnet Margules data to the garnet-biotite geothermometer , 2000 .

[132]  An Yin,et al.  Geologic Evolution of the Himalayan-Tibetan Orogen , 2000 .

[133]  L. Ratschbacher,et al.  Hot and dry deep crustal xenoliths from tibet , 2000, Science.

[134]  Krogh Ravna The garnet–clinopyroxene Fe2+–Mg geothermometer: an updated calibration , 2000 .

[135]  K. Hodges,et al.  Neogene cooling and exhumation of upper-amphibolite-facies `whiteschists' in the southwest Pamir Mountains, Tajikistan , 1999 .

[136]  Sharp,et al.  Application of K‐feldspar–jadeite–quartz barometry to eclogite facies metagranites and metapelites in the Sesia Lanzo Zone (Western Alps, Italy)* , 1999 .

[137]  J. Saleeby,et al.  The age and origin of a thick mafic–ultramafic keel from beneath the Sierra Nevada batholith , 1998 .

[138]  S. Banno,et al.  Thermodynamic modelling of sodic pyroxene solid-solution and its application in a garnet-omphacite-kyanite-coesite geothermobarometer for UHP metamorphic rocks , 1997 .

[139]  R. Luth Experimental study of the system phlogopite-diopside from 3.5 to 17 GPa , 1997 .

[140]  B. Dutrow,et al.  Garnet-biotite geothermometry revised: New Margules parameters and a natural specimen data set from Maine , 1997 .

[141]  P. Ulmer,et al.  Phase relations of a natural MARID composition and implications for MARID genesis, lithospheric melting and mantle metasomatism , 1993 .

[142]  O. J. Kleppa,et al.  The ΔH of reaction and recalibration of garnet-pyroxene-plagioclase-quartz geobarometers in the CMAS system by solution calorimetry , 1991 .

[143]  M. Kohn,et al.  Error propagation for barometers; 2, Application to rocks , 1991 .

[144]  T. Holland,et al.  Activities of components in omphacitic solid solutions , 1990 .

[145]  G. Droop,et al.  A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria , 1987, Mineralogical Magazine.

[146]  K. K. Sharma Crustal growth and two-stage India-Eurasia collision in Ladakh , 1987 .

[147]  Philip England,et al.  FINITE STRAIN CALCULATIONS OF CONTINENTAL DEFORMATION .2. COMPARISON WITH THE INDIA-ASIA COLLISION ZONE , 1986 .

[148]  M. Arima,et al.  Partial melting of a phlogopite-clinopyroxenite nodule from south-west Uganda: an experimental study bearing on the origin of highly potassic continental rift volcanics , 1985 .

[149]  T. Gasparik Experimentally determined compositions of diopside-jadeite pyroxene in equilibrium with albite and quartz at 1200–1350°C and 15–34 kbar , 1985 .

[150]  B. Burchfiel,et al.  The Continental Crust. , 1983 .

[151]  P. R. Cobbold,et al.  Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine , 1982 .

[152]  M. Carpenter Time-temperature-transformation (TTT) analysis of cation disordering in omphacite , 1982 .

[153]  S. Roecker Velocity structure of the Pamir‐Hindu Kush Region: Possible evidence of subducted crust , 1982 .

[154]  P. Tapponnier,et al.  Mesozoic ophiolites, sutures, and arge-scale tectonic movements in Afghanistan , 1981 .

[155]  J. Smyth,et al.  Cation vacancies and the crystal chemistry of breakdown reactions in kimberlitic omphacites , 1980 .

[156]  P. Bird Continental delamination and the Colorado Plateau , 1979 .

[157]  S. Billington,et al.  Spatial distribution and focal mechanisms of mantle earthquakes in the Hindu Kush–Pamir region: A contorted Benioff zone , 1977 .

[158]  R. Steiger,et al.  Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology , 1977 .

[159]  R. Cawthorn.,et al.  The recalculation of pyroxene end-member parameters and the estimation of ferrous and ferric iron content from electron microprobe analyses , 1974 .

[160]  P. Molnar,et al.  Fault plane solutions of shallow earthquakes and contemporary tectonics in Asia , 1973 .

[161]  P. J. Modreski,et al.  Phase relationships of phlogopite in the system K 2 O-MgO-CaO-Al 2 O 3 -SiO 2 -H 2 O to 35 kilobars; a better model for micas in the interior of the Earth , 1973 .

[162]  H. Urey ABUNDANCES OF THE ELEMENTS , 1952 .

[163]  L. Zeng,et al.  Along-arc variations in isotope and trace element compositions of Paleogene gabbroic rocks in the Gangdese batholith, southern Tibet , 2019, Lithos.

[164]  P. DeCelles,et al.  Structural setting and detrital zircon U–Pb geochronology of Triassic–Cenozoic strata in the eastern Central Pamir,Tajikistan , 2019 .

[165]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[166]  Qing Zhou,et al.  Origin of Middle Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Kunlun orogen, northwest China: A record of the closure of Paleo-Tethys , 2013 .

[167]  C. Currie,et al.  Crustal eclogitization and lithosphere delamination in orogens , 2013 .

[168]  S. Foley A Reappraisal of Redox Melting in the Earth’s Mantle as a Function of Tectonic Setting and Time , 2011 .

[169]  E. Cowgill Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China , 2010 .

[170]  Donna L. Whitney,et al.  Abbreviations for names of rock-forming minerals , 2010 .

[171]  A. Yin Cenozoic tectonic evolution of Asia : A preliminary synthesis , 2010 .

[172]  P. Sylvester Laser Ablation-ICP-MS in the Earth Sciences CURRENT PRACTICES AND OUTSTANDING ISSUES , 2008 .

[173]  W. Dav Error propagation in calculations of structural formulas , 2007 .

[174]  LrNo. l T. Er,et al.  Ternary feldspar experiments and thermodynamic models , 2007 .

[175]  Guv L. Hovrst Gibbs energies and entropies of KNa mixing for alkali feldspars from phase equilibrium data : Implications for feldspar solvi and short-range order , 2007 .

[176]  L. FunnvreN,et al.  Ternary-feldspar modeling and thermometry , 2007 .

[177]  Josnpn R. SuvrH Cation vacancies and the crystal chemistry of breakdown reactions in kimberlitic omphacites , 2007 .

[178]  GEOLOGICAL AND GEOPHYSICAL , 2006 .

[179]  L. Elkins‐Tanton Continental magmatism caused by lithospheric delamination , 2005 .

[180]  S. Marshak Salients, Recesses, Arcs, Oroclines, and SyntaxesA Review of Ideas Concerning the Formation of Map-view Curves in Fold-thrust Belts , 2004 .

[181]  K. Ludwig User's Manual for Isoplot 3.00 - A Geochronological Toolkit for Microsoft Excel , 2003 .

[182]  M. Gaetani,et al.  Mantle exhumation along the Tirich Mir Fault Zone, NW Pakistan: pre-mid-Cretaceous accretion of the Karakoram terrane to the Asian margin , 2000, Geological Society, London, Special Publications.

[183]  C. M. Scarfe Experimental study of the system phlogopite-diopside from 3.5 to 17 GPa , 1997 .

[184]  M. Gaetani,et al.  Jurassic and Cretaceous orogenic events in the North Karakoram: age constraints from sedimentary rocks , 1993, Geological Society, London, Special Publications.

[185]  R. Arculus,et al.  Continental lower crust , 1992 .

[186]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[187]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[188]  S. Stein Fault plane solutions , 1987 .

[189]  S. Taylor,et al.  The continental crust: Its composition and evolution , 1985 .

[190]  E. Uchupi Tectonic evolution. , 1980, Science.