Invariants of distance k-graphs for graph embedding

Graph comparison algorithms based on metric space embedding have been proven robust in graph clustering and classification. In this paper we propose graph embedding method exploiting ordered invariants of distance k-graphs, which encode structure of shortest-paths. We study degree histograms of those graphs and use them to construct permutation invariant graph representation called vertex B-matrix. In order to extract more information from structural patterns we also define edge distance k-graphs and associated edge B-matrix. Next, several new graph characteristics obtained by condensing information stored in B-matrices are introduced. We demonstrate that our approach provides stable embedding, which captures relevant graph features. Experiments on classification with satellite photo and mutagenicity benchmark datasets revealed, that new descriptors allow for distinguishing graphs with non trivial structural differences. Moreover, they appear to outperform descriptors based on heat kernel matrix, being at the same time more effective computationally. In the end we test feature selection on B-matrices showing that selecting right B-submatrix can improve classification rate on testing datasets.

[1]  Edwin R. Hancock,et al.  Manifold Embedding of Graphs Using the Heat Kernel , 2005, IMA Conference on the Mathematics of Surfaces.

[2]  Kaspar Riesen,et al.  Approximate graph edit distance computation by means of bipartite graph matching , 2009, Image Vis. Comput..

[3]  Salvatore Tabbone,et al.  Graph Embedding Using Constant Shift Embedding , 2010, ICPR Contests.

[4]  Edwin R. Hancock,et al.  Graph Characterization via Ihara Coefficients , 2011, IEEE Transactions on Neural Networks.

[5]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[6]  David A. Yuen,et al.  Efficient Graph Comparison and Visualization Using GPU , 2011, 2011 14th IEEE International Conference on Computational Science and Engineering.

[7]  Ernesto Estrada Generalized walks-based centrality measures for complex biological networks. , 2010, Journal of theoretical biology.

[8]  Desmond J. Higham,et al.  Network Properties Revealed through Matrix Functions , 2010, SIAM Rev..

[9]  Kaspar Riesen,et al.  Graph Classification Based on Vector Space Embedding , 2009, Int. J. Pattern Recognit. Artif. Intell..

[10]  Yaim Cooper Properties Determined by the Ihara Zeta Function of a Graph , 2009, Electron. J. Comb..

[11]  Alex Pothen,et al.  New Acyclic and Star Coloring Algorithms with Application to Computing Hessians , 2007, SIAM J. Sci. Comput..

[12]  Horst Bunke,et al.  On a relation between graph edit distance and maximum common subgraph , 1997, Pattern Recognit. Lett..

[13]  Edwin R. Hancock,et al.  Clustering and Embedding Using Commute Times , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[15]  E. M. Bollt,et al.  Portraits of complex networks , 2008 .

[16]  John R. Gilbert,et al.  Solving path problems on the GPU , 2010, Parallel Comput..

[17]  P. J. Narayanan,et al.  Accelerating Large Graph Algorithms on the GPU Using CUDA , 2007, HiPC.

[18]  Wojciech W. Czech Graph Descriptors from B-Matrix Representation , 2011, GbRPR.

[19]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[20]  King-Sun Fu,et al.  A distance measure between attributed relational graphs for pattern recognition , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[21]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[22]  Thomas Gärtner,et al.  On Graph Kernels: Hardness Results and Efficient Alternatives , 2003, COLT.

[23]  Kerri Morgan,et al.  Certificates of Factorisation for a Class of Triangle-Free Graphs , 2009, Electron. J. Comb..

[24]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[25]  Edwin R. Hancock,et al.  Pattern Vectors from Algebraic Graph Theory , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Francisco Escolano,et al.  Graph-Based Representations in Pattern Recognition and Computational Intelligence , 2009, IWANN.

[27]  Tao Jiang,et al.  Efficient and robust feature extraction by maximum margin criterion , 2003, IEEE Transactions on Neural Networks.

[28]  Edwin R. Hancock,et al.  Graph characteristics from the heat kernel trace , 2009, Pattern Recognit..

[29]  Dongxiao Zhu,et al.  BMC Bioinformatics BioMed Central , 2005 .

[30]  Edwin R. Hancock,et al.  Spectral embedding of graphs , 2003, Pattern Recognit..

[31]  Kaspar Riesen,et al.  IAM Graph Database Repository for Graph Based Pattern Recognition and Machine Learning , 2008, SSPR/SPR.

[32]  Edwin R. Hancock,et al.  A generative model for graph matching and embedding , 2009, Comput. Vis. Image Underst..

[33]  James Demmel,et al.  Benchmarking GPUs to tune dense linear algebra , 2008, HiPC 2008.

[34]  Witold Dzwinel,et al.  Exploring Complex Networks with Graph Investigator Research Application , 2011, Comput. Informatics.

[35]  Francisco Escolano,et al.  High-Dimensional Spectral Feature Selection for 3D Object Recognition Based on Reeb Graphs , 2010, SSPR/SPR.

[36]  Horst Bunke,et al.  A graph distance metric based on the maximal common subgraph , 1998, Pattern Recognit. Lett..

[37]  Alexandru Nicolau,et al.  R-Kleene: A High-Performance Divide-and-Conquer Algorithm for the All-Pair Shortest Path for Densely Connected Networks , 2007, Algorithmica.

[38]  Steven Skiena,et al.  Implementing discrete mathematics - combinatorics and graph theory with Mathematica , 1990 .