Design Considerations for Ultra-Low Energy Wireless Micro Sensor Nodes

This tutorial paper examines architectural and circuit design techniques for a micro sensor node operating at power levels low enough to enable the use of an energy harvesting source. These requirements place demands on all levels of the design. We propose architecture for achieving the required ultra-low energy operation and discuss the circuit techniques necessary to implement the system. Dedicated hardware implementations improve the efficiency for specific functionality, and modular partitioning permits fine-grained optimization and power-gating. We describe modeling and operating at the minimum energy point in the transmitter and the ADC. A micro sensor node using the techniques we describe can function in an energy-harvesting scenario Kewords: Integrated circuits, energy-aware systems, low-power design, wireless sensor networks

[1]  Anantha Chandrakasan,et al.  Optimal supply and threshold scaling for subthreshold CMOS circuits , 2002, Proceedings IEEE Computer Society Annual Symposium on VLSI. New Paradigms for VLSI Systems Design. ISVLSI 2002.

[2]  SeongHwan Cho,et al.  A 6.5 GHz CMOS FSK modulator for wireless sensor applications , 2002, 2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302).

[3]  K. Najafi,et al.  An electromagnetic micro power generator for low-frequency environmental vibrations , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[4]  Anantha Chandrakasan,et al.  Vibration-to-electric energy conversion , 1999, Proceedings. 1999 International Symposium on Low Power Electronics and Design (Cat. No.99TH8477).

[5]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[6]  J.D. Berst,et al.  Analog to digital converter , 1991, Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference.

[7]  J. Burr,et al.  Ultra low power CMOS technology , 1991 .

[8]  K. Osada,et al.  SRAM immunity to cosmic-ray-induced multierrors based on analysis of an induced parasitic bipolar effect , 2004, IEEE Journal of Solid-State Circuits.

[9]  H. Bottner,et al.  New thermoelectric components using microsystem technologies , 2004, Journal of Microelectromechanical Systems.

[10]  A. Chandrakasan,et al.  MTCMOS sequential circuits , 2001, Proceedings of the 27th European Solid-State Circuits Conference.

[11]  Robert H. Walden,et al.  Analog-to-digital converter survey and analysis , 1999, IEEE J. Sel. Areas Commun..

[12]  Anantha Chandrakasan,et al.  Characterizing and modeling minimum energy operation for subthreshold circuits , 2004, Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758).

[13]  A. Chandrakasan,et al.  A 180mV FFT processor using subthreshold circuit techniques , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[14]  Jan M. Rabaey,et al.  PicoRadio Supports Ad Hoc Ultra-Low Power Wireless Networking , 2000, Computer.

[15]  Randy H. Katz,et al.  Next century challenges: mobile networking for “Smart Dust” , 1999, MobiCom.

[16]  Anantha Chandrakasan,et al.  Upper bounds on the lifetime of sensor networks , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).