Some Ocean Model Fundamentals

The purpose of these lectures is to present elements of the equations and algorithms used in numerical models of the large-scale ocean circulation. Such models generally integrate the ocean’s primitive equations, which are based on Newton’s Laws applied to a continuum fluid under hydrostatic balance in a spherical geometry, along with linear irreversible thermodynamics and subgrid scale (SGS) parameterizations. During formulations of both the kinematics and dynamics, we highlight issues related to the use of a generalized vertical coordinate. The vertical coordinate is arguably the most critical element determining how a model is designed and applications to which a model is of use.

[1]  A. Adcroft,et al.  Representation of Topography by Shaved Cells in a Height Coordinate Ocean Model , 1997 .

[2]  R. Greatbatch,et al.  The non-boussinesq temporal residual mean , 2003 .

[3]  Ross J. Murray,et al.  Explicit Generation of Orthogonal Grids for Ocean Models , 1996 .

[4]  Robert Hallberg,et al.  Stable Split Time Stepping Schemes for Large-Scale Ocean Modeling , 1997 .

[5]  Rainer Feistel,et al.  Accurate and Computationally Efficient Algorithms for Potential Temperature and Density of Seawater , 2003 .

[6]  M. Cullen,et al.  Numerical Prediction and Dynamic Meteorology, 2nd Edn. By G. J. HALTINER and R. T. WILLIAMS. Wiley, 1980. 477 pp. £26.90. , 1984, Journal of Fluid Mechanics.

[7]  Zhang Xuehong,et al.  An oceanic general circulation model in pressure coordinates , 2001 .

[8]  S. Griffies,et al.  A Technical Guide to MOM4 , 2004 .

[9]  T. Haine,et al.  Adjoints of nonoscillatory advection schemes , 2001 .

[10]  Stephen M. Griffies,et al.  Fundamentals of Ocean Climate Models , 2004 .

[11]  K. Bryan A Numerical Method for the Study of the Circulation of the World Ocean , 1997 .

[12]  Hernan G. Arango,et al.  Developments in terrain-following ocean models: intercomparisons of numerical aspects , 2002 .

[13]  Rainer Bleck,et al.  An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates , 2002 .

[14]  L. Perelman,et al.  Hydrostatic, quasi‐hydrostatic, and nonhydrostatic ocean modeling , 1997 .

[15]  Alistair Adcroft,et al.  Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models , 2004 .

[16]  Alistair Adcroft,et al.  A New Treatment of the Coriolis Terms in C-Grid Models at Both High and Low Resolutions , 1999 .

[17]  Gurvan Madec,et al.  A global ocean mesh to overcome the North Pole singularity , 1996 .

[18]  Alistair Adcroft,et al.  On methods for solving the oceanic equations of motion in generalized vertical coordinates , 2006 .

[19]  Anand Gnanadesikan,et al.  Transient Response in a Z-Level Ocean Model That Resolves Topography with Partial Cells , 1998 .

[20]  Dale B. Haidvogel,et al.  Numerical Ocean Circulation Modeling , 1999 .

[21]  L. Kantha,et al.  Numerical models of oceans and oceanic processes , 2000 .

[22]  D. Durran Numerical methods for wave equations in geophysical fluid dynamics , 1999 .

[23]  Stephen M. Griffies,et al.  Spurious Diapycnal Mixing Associated with Advection in a z-Coordinate Ocean Model , 2000 .

[24]  Richard J. Greatbatch,et al.  An overview of coastal ocean models , 1999 .

[25]  Alistair Adcroft,et al.  Atmosphere–Ocean Modeling Exploiting Fluid Isomorphisms , 2004 .

[26]  R. Samelson,et al.  The Duality between the Boussinesq and Non-Boussinesq Hydrostatic Equations of Motion , 2002 .

[27]  Advanced physical oceanographic numerical modelling , 1986 .

[28]  R. Huang,et al.  Real Freshwater Flux as a Natural Boundary Condition for the Salinity Balance and Thermohaline Circulation Forced by Evaporation and Precipitation , 1993 .

[29]  Eric Blayo,et al.  Adaptive Mesh Refinement for Finite-Difference Ocean Models: First Experiments , 1999 .

[30]  T. McDougall The Vertical Motion of Submesoscale Coherent Vortices across Neutral Surfaces , 1987 .

[31]  H. Hasumi,et al.  Developments in ocean climate modelling , 2000 .

[32]  Alistair Adcroft,et al.  How Sensitive are Coarse General Circulation Models to Fundamental Approximations in the Equations of Motion , 2003 .

[33]  Eric P. Chassignet,et al.  Ocean modeling and parameterization , 1998 .

[34]  T. McDougall The Influence of Ocean Mixing on the Absolute Velocity Vector , 1995 .

[35]  S. Griffies,et al.  Tracer Conservation with an Explicit Free Surface Method for z-Coordinate Ocean Models , 2001 .

[36]  A. E. Gill Atmosphere-Ocean Dynamics , 1982 .

[37]  John K. Dukowicz,et al.  Inclusion of Thermobaricity in Isopycnic-Coordinate Ocean Models , 1999 .

[38]  Stephen Pond,et al.  A Numerical Model of the Circulation in Knight Inlet, British Columbia, Canada , 1995 .

[39]  G. Holloway Moments of probable seas: statistical dynamics of Planet Ocean , 1999 .

[40]  Alistair Adcroft,et al.  Conservation of properties in a free-surface model , 2004 .

[41]  T. Black The new NMC mesoscale Eta Model: description and forecast examples , 1994 .

[42]  James C. McWilliams,et al.  A method for computing horizontal pressure‐gradient force in an oceanic model with a nonaligned vertical coordinate , 2003 .

[43]  J. Moum,et al.  Small Scale Processes in Geophysical Fluid Flows , 2001 .

[44]  T. McDougall Potential Enthalpy: A Conservative Oceanic Variable for Evaluating Heat Content and Heat Fluxes , 2003 .

[45]  Rainer Feistel,et al.  Algorithms for Density, Potential Temperature, Conservative Temperature, and the Freezing Temperature of Seawater , 2006 .