Accurate and efficient evaluation of Schur and Jack functions

We present new algorithms for computing the values of the Schur s λ (x 1 ,x 2 ,...,x n ) and Jack J α λ (x 1 ,x 2 ,...,x n ) functions in floating point arithmetic. These algorithms deliver guaranteed high relative accuracy for positive data (x i , a > 0) and run in time that is only linear in n.

[1]  R. Stanley,et al.  Enumerative Combinatorics: Index , 1999 .

[2]  Andrew T. A. Wood,et al.  Laplace approximations for hypergeometric functions with matrix argument , 2002 .

[3]  B. A. Rankin Ramanujan: Twelve lectures on subjects suggested by his life and work. By G. H. Hardy. (Chelsea Publishing Company, N.Y.) , 1961 .

[4]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[5]  James Demmel Accurate Singular Value Decompositions of Structured Matrices , 2000, SIAM J. Matrix Anal. Appl..

[6]  Arnold Schönhage,et al.  Schnelle Multiplikation großer Zahlen , 1971, Computing.

[7]  Alan Edelman,et al.  Tails of Condition Number Distributions , 2005, SIAM J. Matrix Anal. Appl..

[8]  Nicholas J. Higham,et al.  Stability analysis of algorithms for solving confluent Vandermonde-like systems , 1990 .

[9]  I. MacDonald Schur functions: Theme and variations. , 1992 .

[10]  Alan Edelman,et al.  The efficient evaluation of the hypergeometric function of a matrix argument , 2006, Math. Comput..

[11]  James Demmel,et al.  The Accurate and Efficient Solution of a Totally Positive Generalized Vandermonde Linear System , 2005, SIAM J. Matrix Anal. Appl..

[12]  P. Koev,et al.  On the largest principal angle between random subspaces , 2006 .

[13]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[14]  H. Van de Vel,et al.  Numerical treatment of a generalized Vandermonde system of equations , 1977 .

[15]  Å. Björck,et al.  Solution of Vandermonde Systems of Equations , 1970 .

[16]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[17]  Ansi Ieee,et al.  IEEE Standard for Binary Floating Point Arithmetic , 1985 .

[18]  Plamen Koev,et al.  Accurate Eigenvalues and SVDs of Totally Nonnegative Matrices , 2005, SIAM J. Matrix Anal. Appl..

[19]  Douglas M. Priest,et al.  Algorithms for arbitrary precision floating point arithmetic , 1991, [1991] Proceedings 10th IEEE Symposium on Computer Arithmetic.

[20]  Siddhartha Sahi,et al.  A recursion and a combinatorial formula for Jack polynomials , 1996 .

[21]  G. Hardy,et al.  Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work , 1978 .

[22]  R. Gutiérrez,et al.  APPROXIMATION OF HYPERGEOMETRIC FUNCTIONS WITH MATRICIAL ARGUMENT THROUGH THEIR DEVELOPMENT IN SERIES OF ZONAL POLYNOMIALS , 2000 .

[23]  R. Stanley Some combinatorial properties of Jack symmetric functions , 1989 .

[24]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[25]  Guido D. Salvucci,et al.  Ieee standard for binary floating-point arithmetic , 1985 .

[26]  S. B. Atienza-Samols,et al.  With Contributions by , 1978 .

[27]  James Demmel,et al.  Accurate SVDs of Structured Matrices , 1998 .