A parabolic quadrilateral finite element for compressible and incompressible flows

Thesis (Sc.D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1998.

[1]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[2]  Hong Luo,et al.  Implicit schemes and boundary conditions for compressible flows on unstructured grids , 1994 .

[3]  Miguel Cervera,et al.  The intrinsic time for the streamline upwind/Petrov-Galerkin formulation using quadratic elements , 1992 .

[4]  T. Kubota,et al.  Experimental investigation of supersonic laminar, two-dimensional boundary-layer separation in a compression corner with and without cooling. , 1967 .

[5]  T. Belytschko,et al.  A generalized Galerkin method for steady convection-diffusion problems with application to quadratic shape function elements , 1985 .

[6]  R. F. Warming,et al.  Diagonalization and simultaneous symmetrization of the gas-dynamic matrices , 1975 .

[7]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[8]  Klaus-Jürgen Bathe,et al.  Finite element analysis of incompressible and compressible fluid flows with free surfaces and structural interactions , 1995 .

[9]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics. X - The compressible Euler and Navier-Stokes equations , 1991 .

[10]  Dena Hendriana,et al.  On a parabolic quadrilateral finite element for compressible flows , 2000 .

[11]  S. Chakravarthy Euler equations - Implicit schemes and boundary conditions , 1983 .

[12]  J. T. Oden,et al.  Adaptive implicit/explicit finite element method for compressible viscous flows , 1992 .

[13]  Tayfun E. Tezduyar,et al.  SUPG finite element computation of compressible flows with the entropy and conservation variables formulations , 1993 .

[14]  K. Bathe,et al.  DISPLACEMENT/PRESSURE BASED MIXED FINITE ELEMENT FORMULATIONS FOR ACOUSTIC FLUID–STRUCTURE INTERACTION PROBLEMS , 1997 .

[15]  Regina C. Almeida,et al.  An adaptive Petrov-Galerkin formulation for the compressible Euler and Navier-Stokes equations , 1996 .

[16]  B. Deblois Quadratic, streamline upwinding for finite element method solutions to 2-D convective transport problems , 1996 .

[17]  J. Peraire,et al.  TVD ALGORITHMS FOR THE SOLUTION OF THE COMPRESSIBLE EULER EQUATIONS ON UNSTRUCTURED MESHES , 1994 .

[18]  J. Zhu,et al.  On the higher-order bounded discretization schemes for finite volume computations of incompressible flows , 1992 .

[19]  E. Baskharone,et al.  A monotone streamline upwind method for quadratic finite elements , 1993 .

[20]  Michel Fortin,et al.  Finite-element solution of compressible viscous flows using conservative variables , 1994 .

[21]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[22]  K. Bathe,et al.  Fundamental considerations for the finite element analysis of shell structures , 1998 .

[23]  K. Bathe,et al.  The inf-sup test , 1993 .

[24]  Jaime Peraire,et al.  An implicit finite element method for high speed flows , 1991 .

[25]  Leszek Demkowicz,et al.  Toward a universal h-p adaptive finite element strategy , 1989 .

[26]  Leszek Demkowicz,et al.  A posteriori error analysis in finite elements: the element residual method for symmetrizable problems with applications to compressible Euler and Navier-Stokes equations , 1990 .

[27]  R. Codina,et al.  A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation , 1997 .

[28]  Mario A. Storti,et al.  Equal-order interpolations: a unified approach to stabilize the incompressible and advective effects , 1997 .

[29]  Klaus-Jürgen Bathe,et al.  Some advances in the analysis of fluid flows , 1997 .

[30]  Thomas J. R. Hughes,et al.  A boundary integral modification of the Galerkin least squares formulation for the Stokes problem , 1994 .

[31]  B. P. Leonard,et al.  The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection , 1991 .

[32]  K. Bathe Finite Element Procedures , 1995 .

[33]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[34]  Dana R. Lindquist,et al.  A comparison of numerical schemes on triangular and quadrilateral meshes , 1989 .

[35]  E. Oñate,et al.  Finite volumes and finite elements: Two ‘good friends’ , 1994 .

[36]  F. Brezzi,et al.  A discourse on the stability conditions for mixed finite element formulations , 1990 .

[37]  J. Tinsley Oden,et al.  Finite Elements, Mathematical Aspects. , 1986 .

[38]  Michel Fortin,et al.  On finite element approximation and stabilization methods for compressible viscous flows , 1993 .

[39]  Richard Abraham Shapiro Adaptive Finite Element Solution Algorithm for the Euler Equations , 1991 .

[40]  G. Carey,et al.  Least-squares finite element methods for compressible Euler equations , 1990 .

[41]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems , 1986 .

[42]  Paul Glaister,et al.  An approximate linearised Riemann solver for the three-dimensional Euler equations for real gases using operator splitting , 1988 .

[43]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems , 1986 .

[44]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .