Skull Mechanics and the Evolutionary Patterns of the Otic Notch Closure in Capitosaurs (Amphibia: Temnospondyli)

Capitosaurs were among the largest amphibians that have ever lived. Their members displayed an amphibious lifestyle. We provide new information on functional morphology data, using finite element analysis (FEA) which has palaeoecological implications for the group. Our analyses included 17 taxa using (2D) plate models to test four loading cases (bilateral, unilateral and lateral bitings and skull raising system simulation). Our results demonstrates that, when feeding, capitosaurs concentrated the stress at the circumorbital region of the capitosaur skull and cranial sutures probably played a key role in dissipating and absorbing the stress generated during biting. Basal members (as Wetlugasaurus) were probably less specialized forms, while during Middle‐ and Late Triassic the group radiated into different ecomorphotypes with closed otic notch forms (as Cyclotosaurus) resulting in the strongest skulls during biting. Previous interpretations discussed a trend from an open to closed otic notch associated with lateral repositioning of the tabular horns, but the analysis of the skull‐raising system reveals that taxa exhibiting posteriorly directed tabular horns display similar results during skull raising to those of closed otic notch taxa. Our results suggest that various constraints besides otic notch morphology, such as the elongation of the tabular horns, snout length, skull width and position, and size of the orbits affect the function of the skull. On the light of our results, capitosaur skull showed a trend to reduce the stresses and deformation during biting. Capitosaurs could be considered crocodilian analogues as they were top‐level predators in fluvial and brackish Triassic ecosystems. Anat Rec, , 2012. © 2012 Wiley Periodicals, Inc.

[1]  Graeme T. Lloyd,et al.  A supertree of Temnospondyli: cladogenetic patterns in the most species-rich group of early tetrapods , 2007, Proceedings of the Royal Society B: Biological Sciences.

[2]  R.,et al.  The Capitosauria ( Amphibia ) : characters , phylogeny , and stratigraphy , 2008 .

[3]  M. Ruta,et al.  Morphospace occupation of temnospondyl growth series: a geometric morphometric approach , 2009 .

[4]  W. Kathe Morphology and function of the sutures in the dermal skull roof of Discosauriscus austriacus Makowsky; 1876 (Seymouriamorpha; Lower Permian of Moravia) and Onchiodon labyrinthicus Geinitz; 1861 (Temnospondyli; Lower Permian of Germany) , 1995 .

[5]  S. Herring,et al.  Craniofacial sutures: Morphology, growth, and in vivo masticatory strains , 1999, Journal of morphology.

[6]  P. Tafforeau,et al.  Limb‐bone histology of temnospondyls: implications for understanding the diversification of palaeoecologies and patterns of locomotion of Permo‐Triassic tetrapods , 2010, Journal of evolutionary biology.

[7]  J. M. Garcı́a,et al.  Modelling bone tissue fracture and healing: a review ☆ , 2004 .

[8]  E. Rayfield,et al.  Shape and mechanics in thalattosuchian (Crocodylomorpha) skulls: implications for feeding behaviour and niche partitioning , 2009, Journal of anatomy.

[9]  C. Marshall,et al.  Terrestrial-style feeding in a very early aquatic tetrapod is supported by evidence from experimental analysis of suture morphology , 2007, Proceedings of the National Academy of Sciences.

[10]  Emily J Rayfield,et al.  Cranial mechanics and feeding in Tyrannosaurus rex , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[11]  R. Damiani A systematic revision and phylogenetic analysis of Triassic mastodonsauroids (Temnospondyli: Stereospondyli) , 2001 .

[12]  F. D. Vree,et al.  CHAPTER 10 – Feeding in Crocodilians , 2000 .

[13]  R. Schoch The Origin And Intrarelationships Of Triassic Capitosaurid Amphibians , 2000 .

[14]  W. Kathe Comparative morphology and functional interpretation of the sutures in the dermal skull roof of temnospondyl amphibians , 1999 .

[15]  J. Steyer Ontogeny and phylogeny in temnospondyls: a new method of analysis , 2000 .

[16]  F. Witzmann,et al.  LARVAL ONTOGENY OF MICROMELERPETON CREDNERI (TEMNOSPONDYLI, DISSOROPHOIDEA) , 2003 .

[17]  Emily J Rayfield,et al.  Using finite-element analysis to investigate suture morphology: a case study using large carnivorous dinosaurs. , 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[18]  U. Morphology,et al.  Aquatic Feeding in Salamanders , 2000 .

[19]  E. Rayfield,et al.  Establishing a framework for archosaur cranial mechanics , 2008, Paleobiology.

[20]  J. Currey The evolution of the mechanical properties of amniote bone. , 1987, Journal of biomechanics.

[21]  F. Witzmann,et al.  Morphometric study of allometric skull growth in the temnospondyl Archegosaurus decheni from the Permian/Carboniferous of Germany , 2007 .

[22]  R. Werneburg,et al.  The plagiosaurid temnospondyl Plagiosuchus pustuliferus (Amphibia: Temnospondyli) from the Middle Triassic of Germany: anatomy and functional morphology of the skull , 2009 .

[23]  Kurt Schwenk,et al.  Feeding : form, function, and evolution in tetrapod vertebrates , 2000 .

[24]  J. Steyer A REVISION OF THE EARLY TRIASSIC “CAPITOSAURS” (STEGOCEPHALI, STEREOSPONDYLI) FROM MADAGASCAR, WITH REMARKS ON THEIR COMPARATIVE ONTOGENY , 2003 .

[25]  D. Wake,et al.  CHAPTER 3 – Aquatic Feeding in Salamanders , 2000 .

[26]  R. Carroll The Palaeozoic Ancestry of Salamanders, Frogs and Caecilians , 2007 .

[27]  R. Schoch The stapes of Mastodonsaurus giganteus (JAEGER 1828) - structure, articulation, ontogeny, and functional implications , 2000 .

[28]  À. Galobart,et al.  Temnospondyli bite club: ecomorphological patterns of the most diverse group of early tetrapods , 2011, Journal of evolutionary biology.

[29]  R. Schoch Life-Cycle Evolution as Response to Diverse Lake Habitats in Paleozoic Amphibians , 2009, Evolution; international journal of organic evolution.

[30]  S. Welles,et al.  A revision of the labyrinthodont family Capitosauridae : and a description of Parotosaurus Peabodyi, N. Sp. from the Wupatki member of the Moenkopi formation of Northern Arizona , 1965 .

[31]  D. Watson The evolution of the labyrinthodonts , 1962, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[32]  I. Grosse,et al.  Requirements for comparing the performance of finite element models of biological structures. , 2009, Journal of theoretical biology.

[33]  M. Taylor How tetrapods feed in water: a functional analysis by paradigm , 1987 .

[34]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[35]  M. Ruta,et al.  GEOMETRIC MORPHOMETRICS OF THE SKULL ROOF OF STEREOSPONDYLS (AMPHIBIA: TEMNOSPONDYLI) , 2006 .

[36]  R. Carroll,et al.  The skull and jaw musculature as guides to the ancestry of salamanders , 1980 .

[37]  Emily J Rayfield,et al.  Patterns of morphospace occupation and mechanical performance in extant crocodilian skulls: A combined geometric morphometric and finite element modeling approach , 2008, Journal of morphology.

[38]  R. Damiani Cranial anatomy of the giant Middle Triassic temnospondyl Cherninia megarhina and a review of feeding in mastodonsaurids , 2001 .

[39]  S. Gatesy,et al.  Gerrothorax pulcherrimus from the Upper Triassic Fleming Fjord Formation of East Greenland and a Reassessment of Head Lifting in Temnospondyl Feeding , 2008 .

[40]  E. Rayfield Finite Element Analysis and Understanding the Biomechanics and Evolution of Living and Fossil Organisms , 2007 .

[41]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[42]  R. Schoch,et al.  Anatomy and relationships of the Triassic temnospondyl Sclerothorax , 2007 .

[43]  Kat. Pawley The postcranial skeleton of temnospondyls (Tetrapoda: temnospondyli) , 2006 .

[44]  N. Kardjilov,et al.  Sculpture and vascularization of dermal bones, and the implications for the physiology of basal tetrapods , 2010 .

[45]  R. Damiani A Giant Skull of the Temnospondyl Xenotosuchus africanus from the Middle Triassic of South Africa and Its Ontogenetic Implications , 2008 .

[46]  J. Bolt Evolution and functional interpretation of some suture patterns in Paleozoic labyrinthodont amphibians and other lower tetrapods , 1974 .

[47]  E. Rayfield,et al.  FINITE ELEMENT ANALYSIS OF UNGULATE JAWS: CAN MODE OF DIGESTIVE PHYSIOLOGY BE DETERMINED? , 2010 .

[48]  Kornelius Kupczik,et al.  Virtual biomechanics: basic concepts and technical aspects of finite element analysis in vertebrate morphology. , 2008, Journal of anthropological sciences = Rivista di antropologia : JASS.

[49]  A. Yates,et al.  The phylogeny of the ‘higher’ temnospondyls (Vertebrata: Choanata) and its implications for the monophyly and origins of the Stereospondyli , 2000 .

[50]  M. Benton,et al.  Ecosystem remodelling among vertebrates at the Permian–Triassic boundary in Russia , 2004, Nature.

[51]  T. Sulej,et al.  The temnospondyl amphibian Cyclotosaurus from the Upper Triassic of Poland , 2005 .

[52]  T. Keaveny,et al.  Evolution of the biomechanical material properties of the femur , 2002, The Anatomical record.

[53]  À. Galobart,et al.  A New Capitosaur from the Middle Triassic of Spain and the Relationships within the Capitosauria , 2011 .

[54]  D. Mukherjee,et al.  Preliminary Observations on the Bone Microstructure, Growth Patterns, and Life Habits of Some Triassic Temnospondyls from India , 2010 .

[55]  L. Lanyon,et al.  Chapter 1. Functional Adaptation in Skeletal Structures , 1985 .