Quantum direct secret sharing with efficient eavesdropping-check and authentication based on distributed fountain codes

We propose to use a simple and effective way to achieve secure quantum direct secret sharing. The proposed scheme uses the properties of fountain codes to allow a realization of the physical conditions necessary for the implementation of no-cloning principle for eavesdropping-check and authentication. In our scheme, to achieve a variety of security purposes, nonorthogonal state particles are inserted in the transmitted sequence carrying the secret shares to disorder it. However, the positions of the inserted nonorthogonal state particles are not announced directly, but are obtained by sending degrees and positions of a sequence that are pre-shared between Alice and each Bob. Moreover, they can confirm that whether there exists an eavesdropper without exchanging classical messages. Most importantly, without knowing the positions of the inserted nonorthogonal state particles and the sequence constituted by the first particles from every EPR pair, the proposed scheme is shown to be secure.

[1]  Tzonelih Hwang,et al.  New circular quantum secret sharing for remote agents , 2013, Quantum Inf. Process..

[2]  T. Hwang,et al.  Multi-party quantum secret sharing based on two special entangled states , 2012 .

[3]  Hadian Dehkordi Massoud,et al.  A novel and efficient multiparty quantum secret sharing scheme using entangled states , 2012 .

[4]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[5]  Pradeep Kiran Sarvepalli,et al.  Matroids and Quantum Secret Sharing Schemes , 2009, ArXiv.

[6]  Z. Man,et al.  Multiparty quantum secret sharing of classical messages based on entanglement swapping , 2004, quant-ph/0406103.

[7]  Vlad Gheorghiu Generalized semiquantum secret-sharing schemes , 2012 .

[8]  Rupert Ursin,et al.  Quantum information: Sharing quantum secrets , 2013, Nature.

[9]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[10]  Gilad Gour,et al.  Reducing the Quantum Communication Cost of Quantum Secret Sharing , 2011, IEEE Transactions on Information Theory.

[11]  Jian-Wei Pan,et al.  Efficient multiparty quantum-secret-sharing schemes , 2004, quant-ph/0405179.

[12]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[13]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .

[14]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[15]  Qin Li,et al.  Semiquantum secret sharing using entangled states , 2009, 0906.1866.

[16]  Zhiwei Sun,et al.  Quantum Secret Sharing of Secure Direct Communication Using One-Time Pad , 2012 .

[17]  Fuguo Deng,et al.  Circular quantum secret sharing , 2006, quant-ph/0612018.

[18]  Fei Gao,et al.  Dense-Coding Attack on Three-Party Quantum Key Distribution Protocols , 2010, IEEE Journal of Quantum Electronics.

[19]  Xin Wang,et al.  Multiparty quantum secret sharing based on the improved Boström–Felbinger protocol , 2007 .

[20]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[21]  Xu Huang,et al.  An efficient scheme for multi-party quantum state sharing via non-maximally entangled states , 2012 .

[22]  Yuan-hua Li,et al.  Semi-quantum information splitting using GHZ-type states , 2013, Quantum Inf. Process..

[23]  Zhan-Jun Zhang,et al.  Multiparty quantum secret sharing of secure direct communication , 2005 .

[24]  Daowen Qiu,et al.  Quantum secret sharing with classical Bobs , 2013 .

[25]  Yi-Min Liu,et al.  Multiparty quantum secret sharing of secure direct communication using single photons , 2008 .

[26]  Chuan Wang,et al.  Recent development in quantum communication , 2012 .

[27]  Massoud Hadian Dehkordi,et al.  Threshold quantum secret sharing between multiparty and multiparty using Greenberger–Horne–Zeilinger state , 2013, Quantum Inf. Process..

[28]  Hua Zhang,et al.  Verifiable quantum (k, n)-threshold secret sharing , 2012, Quantum Inf. Process..

[29]  Baochun Li,et al.  Data Persistence in Large-Scale Sensor Networks with Decentralized Fountain Codes , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[30]  D. Gottesman Theory of quantum secret sharing , 1999, quant-ph/9910067.

[31]  Fuguo Deng,et al.  Bidirectional quantum secret sharing and secret splitting with polarized single photons , 2005, quant-ph/0504119.

[32]  Kejin Wei,et al.  Experimental circular quantum secret sharing over telecom fiber network. , 2013, Optics express.

[33]  Hideki Imai,et al.  Improving quantum secret-sharing schemes , 2001 .

[34]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[35]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[36]  Zhan-jun Zhang Multiparty secret sharing of quantum information via cavity QED , 2006 .

[37]  Zhan-jun Zhang,et al.  Multiparty quantum secret sharing , 2004, quant-ph/0412203.

[38]  Gan Gao,et al.  Secure multiparty quantum secret sharing with the collective eavesdropping-check character , 2013, Quantum Inf. Process..

[39]  Hao Liang,et al.  Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution , 2010 .

[40]  Wen Qiao-Yan,et al.  Threshold Quantum Secret Sharing of Secure Direct Communication , 2009 .

[41]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[42]  Yi-Min Liu,et al.  Multiparty Quantum Secret Sharing Scheme Of Classical Messages By Swapping Qudit-State Entanglement , 2007 .

[43]  Hong-Yu Zhou,et al.  An efficient quantum secret sharing scheme with Einstein–Podolsky–Rosen pairs , 2005 .

[44]  Chuan Wang,et al.  Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration , 2011 .

[45]  Michael Luby,et al.  A digital fountain approach to reliable distribution of bulk data , 1998, SIGCOMM '98.

[46]  Erika Andersson,et al.  Generalized measurements on atoms in microtraps , 2001 .

[47]  Harald Weinfurter,et al.  Secure Communication with a Publicly Known Key , 2001 .