Weak Lensing from Space. II. Dark Matter Mapping

We study the accuracy with which weak-lensing measurements could be made from a future space-based survey, predicting the subsequent precision of three-dimensional dark matter maps, projected two-dimensional dark matter maps, and mass-selected cluster catalogs. As a baseline, we use the instrumental specifications of the SuperNova/Acceleration Probe (SNAP) satellite. We first compute its sensitivity to weak lensing shear as a function of survey depth. Our predictions are based on detailed image simulations created using "shapelets," a complete and orthogonal parameterization of galaxy morphologies. We incorporate a realistic redshift distribution of source galaxies and calculate the average precision of photometric redshift recovery using the SNAP filter set to be Δz = 0.034. The high density of background galaxies resolved in a wide space-based survey allows projected dark matter maps with an rms sensitivity of 3% shear in 1 arcmin2 cells. This will be further improved using a proposed deep space-based survey, which will be able to detect isolated clusters using a three-dimensional lensing inversion technique with a 1 σ mass sensitivity of approximately 1013 M⊙ at z = 0.25. Weak-lensing measurements from space will thus be able to capture non-Gaussian features arising from gravitational instability and map out dark matter in the universe with unprecedented resolution.

[1]  A. S. Fruchter,et al.  Drizzle: A Method for the Linear Reconstruction of Undersampled Images , 1998 .

[2]  Nick Kaiser A New Shear Estimator for Weak-Lensing Observations , 2000 .

[3]  M. White,et al.  Power-spectrum normalization from the local abundance of rich clusters of galaxies , 2001 .

[4]  S. J. Lilly,et al.  The Canada-France Redshift Survey. VI. Evolution of the Galaxy Luminosity Function to Z approximately 1 , 1995 .

[5]  N. Kaiser,et al.  Mapping the dark matter with weak gravitational lensing , 1993 .

[6]  Lars Hernquist,et al.  Galaxy Clustering and Galaxy Bias in a ΛCDM Universe , 2002, astro-ph/0212356.

[7]  Y. Mellier,et al.  Astronomy & Astrophysics manuscript no. (will be inserted by hand later) Likelihood Analysis of Cosmic Shear on Simulated and VIRMOS-DESCART Data ⋆ , 2002 .

[8]  Weak Lensing from Space. III. Cosmological Parameters , 2003, astro-ph/0304419.

[9]  A. Slosar,et al.  Bayesian joint analysis of cluster weak lensing and Sunyaev–Zel'dovich effect data , 2003, astro-ph/0307098.

[10]  H. Hoekstra How well can we determine cluster mass profiles from weak lensing , 2002, astro-ph/0208351.

[11]  A. C. Becker,et al.  Weak-Lensing Discovery and Tomography of a Cluster at z = 0.68 , 2002, astro-ph/0210120.

[12]  B. Jain Magnification Effects as Measures of Large-Scale Structure , 2002, astro-ph/0208515.

[13]  A. Taylor,et al.  Probing the Distribution of Dark Matter in the A901/902 Supercluster with Weak Lensing , 2001, astro-ph/0111288.

[14]  Stephan Aune,et al.  Development of MegaCam, the next-generation wide-field imaging camera for the 3.6-m Canada-France-Hawaii Telescope , 2000, Astronomical Telescopes and Instrumentation.

[15]  Bonn,et al.  Analysis of two-point statistics of cosmic shear - I. Estimators and covariances , 2002, astro-ph/0206182.

[16]  Yannick Mellier,et al.  Weak Lensing Study of Galaxy Biasing , 2002, astro-ph/0206103.

[17]  Catherine Heymans,et al.  Weak gravitational lensing: reducing the contamination by intrinsic alignments , 2002, astro-ph/0208220.

[18]  Rodger I. Thompson,et al.  Near-Infrared Camera and Multi-Object Spectrometer Observations of the Hubble Deep Field: Observations, Data Reduction, and Galaxy Photometry , 1999 .

[19]  Susana E. Deustua,et al.  Wide-Field Surveys from the SNAP Mission , 2002, SPIE Astronomical Telescopes + Instrumentation.

[20]  A. Blain Detecting Gravitational Lensing Cosmic Shear from Samples of Several Galaxies Using Two-dimensional Spectral Imaging , 2002, astro-ph/0204138.

[21]  M. White,et al.  Completeness in Weak-Lensing Searches for Clusters , 2001, astro-ph/0111490.

[22]  Weak Lensing Results from the 75 Square Degree CTIO Survey , 2002, astro-ph/0210604.

[23]  Cosmic Shear and Power Spectrum Normalization with the Hubble Space Telescope , 2002, astro-ph/0203131.

[24]  Y. Mellier Probing the Universe with Weak Lensing , 1998, astro-ph/9812172.

[25]  Peter Schneider,et al.  Separating cosmic shear from intrinsic galaxy alignments: Correlation function tomography , 2002 .

[26]  WEAK LENSING AS A CALIBRATOR OF THE CLUSTER MASS-TEMPERATURE RELATION , 2002, astro-ph/0206292.

[27]  D. Wittman,et al.  Discovery of a Galaxy Cluster via Weak Lensing , 2001, astro-ph/0104094.

[28]  J. Rhodes,et al.  Detection of Cosmic Shear with the Hubble Space Telescope Survey Strip , 2001, astro-ph/0101213.

[29]  Uros Seljak,et al.  Ray-tracing Simulations of Weak Lensing by Large-Scale Structure , 1999, astro-ph/9901191.

[30]  Numerical simulations of weak lensing measurements , 2000, astro-ph/0007023.

[31]  Detection of Dark Matter Concentrations in the Field of Cl 1604+4304 from Weak Lensing Analysis , 2000, astro-ph/0004373.

[32]  A. Szalay,et al.  Redshift Z approximately 1 Field Galaxies Observed with the Keck Telescope and the Hubble Space Telescope , 1996 .

[33]  Bhuvnesh Jain,et al.  Cross-correlation tomography: measuring dark energy evolution with weak lensing. , 2003, Physical review letters.

[35]  B. Jain,et al.  Statistics of weak lensing at small angular scales: analytical predictions for lower order moments , 1999, astro-ph/9912330.

[36]  R. Nichol,et al.  Measuring σ8 with Cluster Lensing: Biases from Unrelaxed Clusters , 2002, astro-ph/0211186.

[37]  The three-point correlation function of cosmic shear: I. The natural components , 2002, astro-ph/0207454.

[38]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[39]  A. Réfrégier Weak Gravitational Lensing by Large-Scale Structure , 2003, astro-ph/0307212.

[40]  Edinburgh,et al.  Joint cosmic shear measurements with the Keck and William Herschel Telescopes , 2002, astro-ph/0203134.

[41]  G. Bernstein,et al.  Weak-Lensing Results from the 75 Square Degree Cerro Tololo Inter-American Observatory Survey , 2003 .

[42]  P. Schneider Detection of (dark) matter concentrations via weak gravitational lensing , 1996, astro-ph/9601039.

[43]  J. Frieman,et al.  Corrective Lenses for High-Redshift Supernovae , 2002, astro-ph/0206339.

[44]  Weak gravitational lensing by dark clusters , 2002, astro-ph/0203061.

[45]  R. McMahon,et al.  Infrared constraints on the dark mass concentration observed in the cluster Abell 1942 , 2001, astro-ph/0101431.

[46]  The cluster abundance in flat and open cosmologies , 1995, astro-ph/9511007.

[47]  Susana E. Deustua,et al.  SNAP focal plane , 2003, SPIE Astronomical Telescopes + Instrumentation.

[48]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[49]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[50]  Alexandre Refregier,et al.  Image simulation with shapelets , 2003, astro-ph/0301449.

[51]  Alexandre Refregier,et al.  Shapelets — II. A method for weak lensing measurements , 2003 .

[52]  Weak Lensing Measurements: A Revisited Method and Application toHubble Space Telescope Images , 1999, astro-ph/9905090.

[53]  Matthew A. Bershady,et al.  The asymmetry of galaxies: physical morphology for nearby and high redshift galaxies , 1999 .

[54]  S. Maddox,et al.  Weak Gravitational Lensing by a Sample of X-Ray Luminous Clusters of Galaxies. I. The Data Set , 2002 .

[55]  A. Réfrégier Shapelets: I. a method for image analysis , 2001, astro-ph/0105178.

[56]  P. Hall,et al.  A Measurement of Weak Lensing by Large-Scale Structure in Red-Sequence Cluster Survey Fields , 2002, astro-ph/0202285.

[57]  H. Dahle WEAK GRAVITATIONAL LENSING BY A SAMPLE OF X-RAY LUMINOUS CLUSTERS OF GALAXIES – III. SERENDIPITOUS WEAK LENSING DETECTIONS OF DARK AND LUMINOUS MASS CONCENTRATIONS. , 2003 .

[58]  C. Keeton,et al.  Three-dimensional mapping of dark matter , 2002, astro-ph/0205412.

[59]  T. Broadhurst,et al.  A Method for Weak Lensing Observations , 1994, astro-ph/9411005.

[60]  G. M. Bernstein,et al.  Shapes and Shears, Stars and Smears: Optimal Measurements for Weak Lensing , 2001 .

[61]  Y. Mellier,et al.  Cosmic shear statistics and cosmology , 2001, astro-ph/0101511.

[62]  Alberto Fernández-Soto,et al.  Star-forming galaxies at very high redshifts , 1996, Nature.

[63]  Constraining the Matter Power Spectrum Normalization Using the Sloan Digital Sky Survey/ROSAT All-Sky Survey and REFLEX Cluster Surveys , 2001, astro-ph/0111394.

[64]  M. Bartelmann,et al.  Weak gravitational lensing , 2016, Scholarpedia.

[65]  Constraints on Omega_m and sigma_8 from weak lensing in RCS fields , 2002, astro-ph/0204295.

[66]  R. Nichol,et al.  Weak Gravitational Lensing by the Nearby Cluster Abell 3667 , 1999, The Astrophysical journal.

[67]  Susana E. Deustua,et al.  Overview of the SuperNova/Acceleration Probe (SNAP) , 2002, SPIE Astronomical Telescopes + Instrumentation.

[68]  Mapping the 3D dark matter potential with weak shear , 2002, astro-ph/0212266.

[69]  S. Dye,et al.  The shear power spectrum from the COMBO-17 survey , 2003 .

[70]  SEARCHING FOR DARK MATTER HALOS IN THE SUPRIME-CAM 2 SQUARE DEGREE FIELD , 2002, astro-ph/0210441.

[71]  H. Hoekstra,et al.  Constraints on Ωm and σ8 from Weak Lensing in Red-Sequence Cluster Survey Fields , 2002 .

[72]  P. Schneider,et al.  A conspicuous tangential alignment of galaxies in a STIS parallel Shear Survey field: A new dark-lens candidate? , 2002, astro-ph/0202122.

[73]  Y. P. Jing Intrinsic correlation of halo ellipticity and its implications for large-scale weak lensing surveys , 2002 .